Abstract

Photoinduced diffraction grating is theoretically investigated in a three-level ladder-type hybrid artificial molecule comprised of a semiconductor quantum dot (SQD) and a metal nanoparticle (MNP). The SQD and the MNP are coupled via the Coulomb interaction. The probe absorption vanishes under the action of a strong coupling field, indicating an effect of electromagnetically induced transparency (EIT). Based on this EIT effect, diffraction grating is achievable when a standing-wave coupling field is applied. It turns out that the efficiency of diffraction grating is greatly improved due to the existence of the MNP. Furthermore, the diffraction efficiency can be controlled by tuning the interaction strength between the SQD and the MNP. Nearly pure phase grating is obtained, showing high transmissivity and high diffraction efficiency up to 33%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
    [CrossRef] [PubMed]
  2. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
    [CrossRef] [PubMed]
  3. J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. Govorov, “Optical Properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
    [CrossRef]
  4. A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B 82(15), 155322 (2010).
    [CrossRef]
  5. R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
    [CrossRef]
  6. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105(26), 263601 (2010).
    [CrossRef] [PubMed]
  7. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
    [CrossRef]
  8. S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
    [CrossRef] [PubMed]
  9. S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009).
    [CrossRef] [PubMed]
  10. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  11. P. K. Nielsen, H. Thyrrestrup, J. Mørk, and B. Tromborg, “Numerical investigation of electromagnetically induced transparency in a quantum dot structure,” Opt. Express 15(10), 6396–6408 (2007).
    [CrossRef] [PubMed]

2011

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
[CrossRef]

2010

A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B 82(15), 155322 (2010).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
[CrossRef]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105(26), 263601 (2010).
[CrossRef] [PubMed]

2009

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[CrossRef] [PubMed]

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009).
[CrossRef] [PubMed]

2008

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. Govorov, “Optical Properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

2007

2006

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Aizpurua, J.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
[CrossRef]

Artuso, R. D.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

Bryant, G. W.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Deng, L.

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[CrossRef] [PubMed]

Di Stefano, O.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105(26), 263601 (2010).
[CrossRef] [PubMed]

Duan, S.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. Govorov, “Optical Properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

Fina, N.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105(26), 263601 (2010).
[CrossRef] [PubMed]

Garcia-Etxarri, A.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
[CrossRef]

Govorov, A.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. Govorov, “Optical Properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

Govorov, A. O.

A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B 82(15), 155322 (2010).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Huang, W.-P.

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Li, X.

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[CrossRef] [PubMed]

Mørk, J.

Nielsen, P. K.

Ridolfo, A.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105(26), 263601 (2010).
[CrossRef] [PubMed]

Sadeghi, S. M.

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009).
[CrossRef] [PubMed]

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[CrossRef] [PubMed]

Saija, R.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105(26), 263601 (2010).
[CrossRef] [PubMed]

Savasta, S.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105(26), 263601 (2010).
[CrossRef] [PubMed]

Thyrrestrup, H.

Tromborg, B.

Yan, J.-Y.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. Govorov, “Optical Properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

Zhang, W.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. Govorov, “Optical Properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Zhao, X.-G.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. Govorov, “Optical Properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

Nano Lett.

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

Nanotechnology

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[CrossRef] [PubMed]

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. Govorov, “Optical Properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B 82(15), 155322 (2010).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
[CrossRef]

Phys. Rev. Lett.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105(26), 263601 (2010).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a)Schematics of nanocrystal complex composed of spherical nanoparticle and quantum dot; (b) the energy structure of the system, the horizontal arrow depicts the Coulomb interaction.

Fig. 2
Fig. 2

(a) Imaginary part (absorption) of probe susceptibility Im[ x (1) ] versus probe detuning Δ p for different Ω c ; (b) Real part (dispersion) of probe susceptibility Re[ x (1) ] versus probe detuning Δ p for different Ω c .Other parameters: Δ c =0,R=33nm.

Fig. 3
Fig. 3

Sketch of the spatial configuration of the probe and coupling beam.

Fig. 4
Fig. 4

(a) Amplitude of transmission function with various inter-particle distances R (nm); (b) Phase of transmission function for different inter-particle distances R (nm). Other parameters: Δ c = Δ p =0,L=100 z 0 ,Ω=13.

Fig. 5
Fig. 5

Diffraction pattern as a function of sin(θ) . (a) for different inter-particle distances R ; (b)with the MNP and without the MNP. Other parameters: N=4,M=5, Δ c = Δ p =0,Ω=13, L=100 z 0 .

Fig. 6
Fig. 6

First-order diffraction intensity as a function of L for different inter-particle distances R (nm). Other parameters are the same as in Fig. 5.

Fig. 7
Fig. 7

First-order diffraction intensity as a function of Ω for different R (nm), with L=100 z 0 . Other parameters are the same as in Fig. 5.

Fig. 8
Fig. 8

(a) Amplitude (red dashed line) and Phase (black dashed-dot line) of transmission function with the MNP; Blue solid line is phase modulation of transmission function without the MNP; (b) with N=4,M=5 , Diffraction patterns with the MNP, transmission function shown in (a); (c) with N=4, M=5, Diffraction pattern by phase modulation in the absence of the MNP, transmission function shown in (a); other parameters: Δ c =0, Δ p =28,Ω=13, R=33nm,L=190 z 0 .

Fig. 9
Fig. 9

First-order intensity as a function of detuning Δ p for different R in nm. Other parameters are the same as in Fig. 8.

Fig. 10
Fig. 10

First-order intensity as a function of L for different inter-particle distances R (unit of nm). Other parameters are the same as in Fig. 8.

Fig. 11
Fig. 11

First-order intensity as a function of the detuning Δ p without MNP. Other used parameters are the same as in Fig. 8.

Tables (1)

Tables Icon

Table 1 Parameter Values Used in the Numerical Simulations

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ 21 =( γ 21 +i Δ p ) σ 21 +i Ω c σ 31 +i Ω ζ ( σ 11 σ 22 ) σ 31 =[ γ 31 +i( Δ p + Δ c )] σ 31 +i Ω c σ 21 i Ω ξ σ 32 σ 21 = σ 12 *
Ω ξ = Ω p (1+ r S α a 3 ε effm R 3 )+ N μ 12 2 2π ε b r S α 2 a 3 ε effm ε effs R 6 A
Im( x (1) )= (1+ K ' ) [ Δ p E+η K '' ]( E Δ p F+ γ 21 )(F+ γ 21 )
Re( x (1) )= (E Δ p )(1+ K ' ) [ Δ p E+η K '' ](E Δ p ) (F+ γ 21 ) 2
E= | Ω c | 2 ( Δ p + Δ c ) γ 31 2 + ( Δ p + Δ c ) 2 ,F= γ 31 2 | Ω c | 2 γ 31 2 + ( Δ p + Δ c ) 2 , K ' = r a 3 S α ε effm R 3 , K '' = μ 12 2 4π ε b ,η= r a 3 S α 2 ε effm ε effs R 6

Metrics