Abstract

We propose and demonstrate a scheme for optical ultrawideband (UWB) pulse generation by exploiting a half-carrier-suppressed Mach–Zehnder modulator (MZM) and a delay-interferometer- and wavelength-division-multiplexer-based, reconfigurable and multi-channel differentiator (DWRMD). Multi-wavelength, polarity- and shape-switchable UWB pulses of monocycle, doublet, triplet, and quadruplet are experimentally generated simply by tuning two bias voltages to modify the carrier-suppression ratio of MZM and the differential order of DWRMD respectively. The pulse position modulation, pulse shape modulation, pulse amplitude modulation and binary phase-shift keying modulation of UWB pulses can also be conveniently realized with the same scheme structure, which indicates that the hybrid modulation of those four formats can be achieved. Consequently, the proposed approach has potential applications in multi-shape, multi-modulation and multi-access UWB-over-fiber communication systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
    [CrossRef]
  2. D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
    [CrossRef]
  3. J. Yao, F. Zeng, and Q. Wang, “Photonic Generation of Ultrawideband Signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
    [CrossRef]
  4. S. Pan and J. Yao, “UWB-Over-Fiber Communications: Modulation and Transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
    [CrossRef]
  5. R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag. 43(2), 80–87 (2005).
    [CrossRef]
  6. F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
    [CrossRef]
  7. J. Dong, X. Zhang, J. Xu, and D. Huang, “All-optical ultrawideband monocycle generation utilizing gain saturation of a dark return-to-zero signal in a semiconductor optical amplifier,” Opt. Lett. 32(15), 2158–2160 (2007).
    [CrossRef] [PubMed]
  8. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Photonic arbitrary waveform generation applicable to multiband UWB communications,” Opt. Express 18(25), 26259–26267 (2010).
    [CrossRef] [PubMed]
  9. H. Huang, K. Xu, J. Li, J. Wu, X. Hong, and J. Lin, “UWB Pulse Generation and Distribution Using a NOLM Based Optical Switch,” J. Lightwave Technol. 26(15), 2635–2640 (2008).
    [CrossRef]
  10. J. Li, B. P. P. Kuo, and K. Kin-Yip Wong, “Ultra-Wideband Pulse Generation Based on Cross-Gain Modulation in Fiber Optical Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
    [CrossRef]
  11. J. Wang and J. Sun, “All-Optical Ultrawideband Monocycle Generation Using Quadratic Nonlinear Interaction Seeded by Dark Pulses,” IEEE Photon. Technol. Lett. 22(3), 140–142 (2010).
    [CrossRef]
  12. J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express 17(5), 3521–3530 (2009).
    [CrossRef] [PubMed]
  13. J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
    [CrossRef]
  14. J. Li, K. Xu, S. Fu, J. Wu, J. Lin, M. Tang, and P. Shum, “Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator,” Opt. Express 15(26), 18156–18161 (2007).
    [CrossRef] [PubMed]
  15. X. Feng, Z. Li, B.-O. Guan, C. Lu, H. Y. Tam, and P. K. A. Wai, “Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator,” Opt. Express 18(4), 3643–3648 (2010).
    [CrossRef] [PubMed]
  16. V. Torres-Company, K. Prince, and I. T. Monroy, “Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion,” Opt. Lett. 33(3), 222–224 (2008).
    [CrossRef] [PubMed]
  17. H. Lv, Y. Yu, T. Shu, D. Huang, S. Jiang, and L. P. Barry, “Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser,” Opt. Express 18(7), 7219–7227 (2010).
    [CrossRef] [PubMed]
  18. M. Abtahi, M. Dastmalchi, S. LaRochelle, and L. A. Rusch, “Generation of Arbitrary UWB Waveforms by Spectral Pulse Shaping and Thermally-Controlled Apodized FBGs,” J. Lightwave Technol. 27(23), 5276–5283 (2009).
    [CrossRef]
  19. S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett. 36(12), 2363–2365 (2011).
    [CrossRef] [PubMed]
  20. M. Mirshafiei, M. Dastmalchi, M. Abtahi, S. LaRochelle, and L. A. Rusch, “Optical distribution of UWB: Low complexity pulse generation supporting OOK and PSK,” in Proceedings of IEEE Topical Meeting on Microwave Photonics (MWP) 2010, pp. 346–349 (2010).
  21. Y. Dai and J. Yao, “High-Chip-Count UWB Biphase Coding for Multiuser UWB-Over-Fiber System,” J. Lightwave Technol. 27(11), 1448–1453 (2009).
    [CrossRef]
  22. M. Jazayerifar, B. Cabon, and J. A. Salehi, “Transmission of Multi-Band OFDM and Impulse Radio Ultra-Wideband Signals Over Single Mode Fiber,” J. Lightwave Technol. 26(15), 2594–2603 (2008).
    [CrossRef]
  23. M. Abtahi and L. A. Rusch, “RoF Delivery over PONs of Optically Shaped UWB Signals for Gigabit/s Wireless Distribution in the Home,” IEEE J. Sel. Areas Comm. 29(6), 1304–1310 (2011).
    [CrossRef]
  24. X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett. 21(17), 1235–1237 (2009).
    [CrossRef]
  25. Y. Wang and X. Dong, “A time-division multiple-access SC-FDE system with IBI suppression for UWB communications,” IEEE J. Sel. Areas Comm. 24(4), 920–926 (2006).
    [CrossRef]
  26. S. H. Song and Q. T. Zhang, “CDMA-PPM for UWB Impulse Radio,” IEEE Trans. Vehicular Technol. 57(2), 1011–1020 (2008).
    [CrossRef]
  27. P. Ou, Y. Zhang, and C.-X. Zhang, “Optical generation of binary-phase-coded, direct-sequence ultra-wideband signals by polarization modulation and FBG-based multi-channel frequency discriminator,” Opt. Express 16(7), 5130–5135 (2008).
    [CrossRef] [PubMed]
  28. Y. Dai and J. Yao, “Optical Generation of Binary Phase-Coded Direct-Sequence UWB Signals Using a Multichannel Chirped Fiber Bragg Grating,” J. Lightwave Technol. 26(15), 2513–2520 (2008).
    [CrossRef]
  29. S. Abraha, N. Tran, C. Okonkwo, H. Chen, E. Tangdiongga, and A. Koonen, “Service Multicasting by All-Optical Routing of 1 Gb/s IR UWB for In-Building Networks,” in Proceedings of Optical Fiber Communications Conference/National Fiber Optic Engineers Conference (OFC/NFOEC) 2011, paper JWA68 (2011).
  30. S. Abraha, C. Okonkwo, H. Yang, D. Visani, Y. Shi, H.-D. Jung, E. Tangdiongga, and T. Koonen, “Performance Evaluation of IR-UWB in Short-Range Fiber Communication Using Linear Combination of Monocycles,” J. Lightwave Technol. 29(8), 1143–1151 (2011).
    [CrossRef]
  31. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
    [CrossRef]
  32. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  33. S. Pan and J. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
    [CrossRef]
  34. R. C. Qiu, “A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design,” IEEE J. Sel. Areas Comm. 20(9), 1628–1637 (2002).
    [CrossRef]
  35. I. S. Lin and A. M. Weiner, “Selective Correlation Detection of Photonically Generated Ultrawideband RF Signals,” J. Lightwave Technol. 26(15), 2692–2699 (2008).
    [CrossRef]
  36. J. Dederer, B. Schleicher, A. Trasser, T. Feger, and H. Schumacher, “A fully monolithic 3.1-10.6 GHz UWB Si/SiGe HBT Impulse-UWB correlation receiver,” in Proceedings of IEEE International Conference on Ultra-Wideband, ICUWB 2008, pp. 33–36 (2008).
  37. T. Li, H. Zhou, and M. Yi, “Gray Coded PPM Performance with Imperfect Slot Synchronization in Optical Communication,” in Proceedings of Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper TUP11_30 (2009).

2011 (4)

2010 (6)

2009 (6)

J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
[CrossRef]

X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett. 21(17), 1235–1237 (2009).
[CrossRef]

J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express 17(5), 3521–3530 (2009).
[CrossRef] [PubMed]

Y. Dai and J. Yao, “High-Chip-Count UWB Biphase Coding for Multiuser UWB-Over-Fiber System,” J. Lightwave Technol. 27(11), 1448–1453 (2009).
[CrossRef]

M. Abtahi, M. Dastmalchi, S. LaRochelle, and L. A. Rusch, “Generation of Arbitrary UWB Waveforms by Spectral Pulse Shaping and Thermally-Controlled Apodized FBGs,” J. Lightwave Technol. 27(23), 5276–5283 (2009).
[CrossRef]

J. Li, B. P. P. Kuo, and K. Kin-Yip Wong, “Ultra-Wideband Pulse Generation Based on Cross-Gain Modulation in Fiber Optical Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

2008 (7)

2007 (3)

2006 (2)

Y. Wang and X. Dong, “A time-division multiple-access SC-FDE system with IBI suppression for UWB communications,” IEEE J. Sel. Areas Comm. 24(4), 920–926 (2006).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

2005 (2)

R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag. 43(2), 80–87 (2005).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[CrossRef]

2003 (2)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

2002 (1)

R. C. Qiu, “A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design,” IEEE J. Sel. Areas Comm. 20(9), 1628–1637 (2002).
[CrossRef]

Abraha, S.

Abraha, S. T.

Abtahi, M.

M. Abtahi and L. A. Rusch, “RoF Delivery over PONs of Optically Shaped UWB Signals for Gigabit/s Wireless Distribution in the Home,” IEEE J. Sel. Areas Comm. 29(6), 1304–1310 (2011).
[CrossRef]

M. Abtahi, M. Dastmalchi, S. LaRochelle, and L. A. Rusch, “Generation of Arbitrary UWB Waveforms by Spectral Pulse Shaping and Thermally-Controlled Apodized FBGs,” J. Lightwave Technol. 27(23), 5276–5283 (2009).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Barry, L. P.

Belisle, C.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[CrossRef]

Bolea, M.

Cabon, B.

Capmany, J.

Dai, Y.

Dastmalchi, M.

Dong, J.

Dong, X.

Y. Wang and X. Dong, “A time-division multiple-access SC-FDE system with IBI suppression for UWB communications,” IEEE J. Sel. Areas Comm. 24(4), 920–926 (2006).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Feng, X.

Fu, S.

Gibbon, T. B.

X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett. 21(17), 1235–1237 (2009).
[CrossRef]

Guan, B.-O.

Hirt, W.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Hong, X.

Huang, D.

Huang, H.

Jazayerifar, M.

Jiang, S.

Jung, H.-D.

Kin-Yip Wong, K.

J. Li, B. P. P. Kuo, and K. Kin-Yip Wong, “Ultra-Wideband Pulse Generation Based on Cross-Gain Modulation in Fiber Optical Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

Koonen, A. M. J.

Koonen, T.

Kuo, B. P. P.

J. Li, B. P. P. Kuo, and K. Kin-Yip Wong, “Ultra-Wideband Pulse Generation Based on Cross-Gain Modulation in Fiber Optical Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

LaRochelle, S.

Li, J.

Li, Z.

Lin, I. S.

Lin, J.

Liu, H.

R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag. 43(2), 80–87 (2005).
[CrossRef]

Lu, C.

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Lv, H.

Monroy, I. T.

X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett. 21(17), 1235–1237 (2009).
[CrossRef]

V. Torres-Company, K. Prince, and I. T. Monroy, “Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion,” Opt. Lett. 33(3), 222–224 (2008).
[CrossRef] [PubMed]

Mora, J.

Okonkwo, C.

Okonkwo, C. M.

Ortega, B.

Ou, P.

Pan, S.

S. Pan and J. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

S. Pan and J. Yao, “UWB-Over-Fiber Communications: Modulation and Transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
[CrossRef]

Paquet, S.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[CrossRef]

Porcino, D.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Prince, K.

Qi, G.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[CrossRef]

Qiu, R. C.

R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag. 43(2), 80–87 (2005).
[CrossRef]

R. C. Qiu, “A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design,” IEEE J. Sel. Areas Comm. 20(9), 1628–1637 (2002).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Rusch, L. A.

M. Abtahi and L. A. Rusch, “RoF Delivery over PONs of Optically Shaped UWB Signals for Gigabit/s Wireless Distribution in the Home,” IEEE J. Sel. Areas Comm. 29(6), 1304–1310 (2011).
[CrossRef]

M. Abtahi, M. Dastmalchi, S. LaRochelle, and L. A. Rusch, “Generation of Arbitrary UWB Waveforms by Spectral Pulse Shaping and Thermally-Controlled Apodized FBGs,” J. Lightwave Technol. 27(23), 5276–5283 (2009).
[CrossRef]

Salehi, J. A.

Seregelyi, J.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[CrossRef]

Shen, X.

R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag. 43(2), 80–87 (2005).
[CrossRef]

Shi, Y.

Shu, T.

Shum, P.

Song, S. H.

S. H. Song and Q. T. Zhang, “CDMA-PPM for UWB Impulse Radio,” IEEE Trans. Vehicular Technol. 57(2), 1011–1020 (2008).
[CrossRef]

Sun, J.

J. Wang and J. Sun, “All-Optical Ultrawideband Monocycle Generation Using Quadratic Nonlinear Interaction Seeded by Dark Pulses,” IEEE Photon. Technol. Lett. 22(3), 140–142 (2010).
[CrossRef]

J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
[CrossRef]

J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express 17(5), 3521–3530 (2009).
[CrossRef] [PubMed]

Sun, Q.

Tam, H. Y.

Tang, M.

Tangdiongga, E.

Torres-Company, V.

Visani, D.

Wai, P. K. A.

Wang, J.

J. Wang and J. Sun, “All-Optical Ultrawideband Monocycle Generation Using Quadratic Nonlinear Interaction Seeded by Dark Pulses,” IEEE Photon. Technol. Lett. 22(3), 140–142 (2010).
[CrossRef]

J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
[CrossRef]

J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express 17(5), 3521–3530 (2009).
[CrossRef] [PubMed]

Wang, Q.

Wang, Y.

Y. Wang and X. Dong, “A time-division multiple-access SC-FDE system with IBI suppression for UWB communications,” IEEE J. Sel. Areas Comm. 24(4), 920–926 (2006).
[CrossRef]

Weiner, A. M.

Wu, J.

Xu, J.

Xu, K.

Yang, H.

Yao, J.

S. Pan and J. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

S. Pan and J. Yao, “UWB-Over-Fiber Communications: Modulation and Transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
[CrossRef]

Y. Dai and J. Yao, “High-Chip-Count UWB Biphase Coding for Multiuser UWB-Over-Fiber System,” J. Lightwave Technol. 27(11), 1448–1453 (2009).
[CrossRef]

Y. Dai and J. Yao, “Optical Generation of Binary Phase-Coded Direct-Sequence UWB Signals Using a Multichannel Chirped Fiber Bragg Grating,” J. Lightwave Technol. 26(15), 2513–2520 (2008).
[CrossRef]

J. Yao, F. Zeng, and Q. Wang, “Photonic Generation of Ultrawideband Signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[CrossRef]

Yu, X.

X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett. 21(17), 1235–1237 (2009).
[CrossRef]

Yu, Y.

Zeng, F.

J. Yao, F. Zeng, and Q. Wang, “Photonic Generation of Ultrawideband Signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

Zhang, C.-X.

Zhang, Q. T.

S. H. Song and Q. T. Zhang, “CDMA-PPM for UWB Impulse Radio,” IEEE Trans. Vehicular Technol. 57(2), 1011–1020 (2008).
[CrossRef]

Zhang, W.

Zhang, X.

J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
[CrossRef]

J. Dong, X. Zhang, J. Xu, and D. Huang, “All-optical ultrawideband monocycle generation utilizing gain saturation of a dark return-to-zero signal in a semiconductor optical amplifier,” Opt. Lett. 32(15), 2158–2160 (2007).
[CrossRef] [PubMed]

Zhang, Y.

IEEE Commun. Mag. (2)

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag. 43(2), 80–87 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
[CrossRef]

IEEE J. Sel. Areas Comm. (4)

M. Abtahi and L. A. Rusch, “RoF Delivery over PONs of Optically Shaped UWB Signals for Gigabit/s Wireless Distribution in the Home,” IEEE J. Sel. Areas Comm. 29(6), 1304–1310 (2011).
[CrossRef]

Y. Wang and X. Dong, “A time-division multiple-access SC-FDE system with IBI suppression for UWB communications,” IEEE J. Sel. Areas Comm. 24(4), 920–926 (2006).
[CrossRef]

S. Pan and J. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

R. C. Qiu, “A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design,” IEEE J. Sel. Areas Comm. 20(9), 1628–1637 (2002).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. Li, B. P. P. Kuo, and K. Kin-Yip Wong, “Ultra-Wideband Pulse Generation Based on Cross-Gain Modulation in Fiber Optical Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

J. Wang and J. Sun, “All-Optical Ultrawideband Monocycle Generation Using Quadratic Nonlinear Interaction Seeded by Dark Pulses,” IEEE Photon. Technol. Lett. 22(3), 140–142 (2010).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett. 21(17), 1235–1237 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[CrossRef]

IEEE Trans. Vehicular Technol. (1)

S. H. Song and Q. T. Zhang, “CDMA-PPM for UWB Impulse Radio,” IEEE Trans. Vehicular Technol. 57(2), 1011–1020 (2008).
[CrossRef]

J. Lightwave Technol. (9)

Y. Dai and J. Yao, “Optical Generation of Binary Phase-Coded Direct-Sequence UWB Signals Using a Multichannel Chirped Fiber Bragg Grating,” J. Lightwave Technol. 26(15), 2513–2520 (2008).
[CrossRef]

Y. Dai and J. Yao, “High-Chip-Count UWB Biphase Coding for Multiuser UWB-Over-Fiber System,” J. Lightwave Technol. 27(11), 1448–1453 (2009).
[CrossRef]

M. Jazayerifar, B. Cabon, and J. A. Salehi, “Transmission of Multi-Band OFDM and Impulse Radio Ultra-Wideband Signals Over Single Mode Fiber,” J. Lightwave Technol. 26(15), 2594–2603 (2008).
[CrossRef]

S. Abraha, C. Okonkwo, H. Yang, D. Visani, Y. Shi, H.-D. Jung, E. Tangdiongga, and T. Koonen, “Performance Evaluation of IR-UWB in Short-Range Fiber Communication Using Linear Combination of Monocycles,” J. Lightwave Technol. 29(8), 1143–1151 (2011).
[CrossRef]

I. S. Lin and A. M. Weiner, “Selective Correlation Detection of Photonically Generated Ultrawideband RF Signals,” J. Lightwave Technol. 26(15), 2692–2699 (2008).
[CrossRef]

J. Yao, F. Zeng, and Q. Wang, “Photonic Generation of Ultrawideband Signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

S. Pan and J. Yao, “UWB-Over-Fiber Communications: Modulation and Transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
[CrossRef]

H. Huang, K. Xu, J. Li, J. Wu, X. Hong, and J. Lin, “UWB Pulse Generation and Distribution Using a NOLM Based Optical Switch,” J. Lightwave Technol. 26(15), 2635–2640 (2008).
[CrossRef]

M. Abtahi, M. Dastmalchi, S. LaRochelle, and L. A. Rusch, “Generation of Arbitrary UWB Waveforms by Spectral Pulse Shaping and Thermally-Controlled Apodized FBGs,” J. Lightwave Technol. 27(23), 5276–5283 (2009).
[CrossRef]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Express (6)

Opt. Lett. (3)

Other (4)

M. Mirshafiei, M. Dastmalchi, M. Abtahi, S. LaRochelle, and L. A. Rusch, “Optical distribution of UWB: Low complexity pulse generation supporting OOK and PSK,” in Proceedings of IEEE Topical Meeting on Microwave Photonics (MWP) 2010, pp. 346–349 (2010).

S. Abraha, N. Tran, C. Okonkwo, H. Chen, E. Tangdiongga, and A. Koonen, “Service Multicasting by All-Optical Routing of 1 Gb/s IR UWB for In-Building Networks,” in Proceedings of Optical Fiber Communications Conference/National Fiber Optic Engineers Conference (OFC/NFOEC) 2011, paper JWA68 (2011).

J. Dederer, B. Schleicher, A. Trasser, T. Feger, and H. Schumacher, “A fully monolithic 3.1-10.6 GHz UWB Si/SiGe HBT Impulse-UWB correlation receiver,” in Proceedings of IEEE International Conference on Ultra-Wideband, ICUWB 2008, pp. 33–36 (2008).

T. Li, H. Zhou, and M. Yi, “Gray Coded PPM Performance with Imperfect Slot Synchronization in Optical Communication,” in Proceedings of Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper TUP11_30 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the proposal for UWB pulse generation

Fig. 2
Fig. 2

The experimental setup for UWB pulse generation, transmission and multicasting. TLS: tunable laser source; PC: polarization controller; MZM: Mach–Zehnder modulator; BPG: bit pattern generator; EDFA: erbium-doped fiber amplifier; OC: optical coupler; HNLF: highly nonlinear fiber; DI: delay interferometer; WDM: wavelength-division multiplexer; SMF: single-mode fiber; PD: photo-detector; ESA: electrical spectrum analyzer; DCA: digital communication analyzer.

Fig. 3
Fig. 3

Waveforms and spectra of the generated monocycles. (a) Waveforms of the positive (red dashed line) and negative (blue solid line) monocycles. (b) Corresponding electrical spectrum with FCC mask in green dashed line.

Fig. 4
Fig. 4

Waveforms and spectra of the generated doublets. (a) Waveforms of the positive (red dashed line) and negative (blue solid line) doublets. (b) Corresponding electrical spectrum with FCC mask in green dashed line.

Fig. 5
Fig. 5

Waveforms and spectra of the generated triplets. (a) Waveforms of the positive (red dashed line) and negative (blue solid line) triplets. (b) Corresponding electrical spectrum with FCC mask in green dashed line.

Fig. 6
Fig. 6

Waveforms and spectra of the generated quadruplets. (a) Waveforms of the positive (red dashed line) and negative (blue solid line) quadruplets. (b) Corresponding electrical spectrum with FCC mask in green dashed line.

Fig. 7
Fig. 7

The UWB pulses propagating over fiber links. (a) The upper and lower FWHM, (b) central frequency and 10-dB bandwidth as a function of the transmission length.

Fig. 8
Fig. 8

(a) Waveform of OOK for the generated UWB data sequence of “101011” and (b) corresponding electrical spectrum with FCC mask in green dashed line; (c) Waveform for the generated UWB data sequence of “111111” and (d) corresponding electrical spectrum with FCC mask in green dashed line.

Fig. 9
Fig. 9

Central frequency and 10-dB bandwidth of UWB pulses as a function of V bias2 after 75km-length SMF transmission

Fig. 10
Fig. 10

WDM-UWB transmission system for multi-access. AWG: arrayed waveguide grating.

Fig. 11
Fig. 11

The UWB pulses generated at different wavelengths as different communication channels. (a) Pulsewidth, (b) central frequency and 10-dB bandwidth of the negative triplets versus the wavelength.

Fig. 12
Fig. 12

Demonstration of UWB hybrid modulation format of PPM, PSM, PAM and BPSK. The matrixes in green color describe the corresponding values of the four parameters for tuning.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E s ( t )= E s0 cos{ Φ[ V( t ) ] 2 }cos( ω s t ),
Φ[ V( t ) ]= ϕ bias1 + π V π V m cos( ω m t )= π V π V bias1 + π V π V m cos( ω m t ),
E s (t)= E s0 cos{ 1 2 [ ϕ bias1 + π V π V m cos( ω m t) ] }cos( ω s t) = E s0 cos( ϕ bias1 2 ) J 0 ( β )cos( ω s t )+ E s0 cos( ϕ bias1 2 ) ×{ n=1 J 2n ( β )[ cos( ω s t2n ω m t+nπ )+cos( ω s t+2n ω m tnπ ) ] } E s0 sin( ϕ bias1 2 ) ×{ n=1 J 2n1 ( β )[ sin( ω s t( 2n1 ) ω m t+nπ π 2 )sin( ω s t+( 2n1 ) ω m tnπ+ π 2 ) ] },
E s (t) E s0 cos( ϕ bias1 2 ) J 0 ( β )cos( ω s t ) E s0 sin( ϕ bias1 2 ) ×{ J 1 ( β )[ sin( ω s t ω m t+ π 2 )sin( ω s t+ ω m t π 2 ) ] }.
[ E o ( t ) E ¯ o ( t ) ]= 1 2 E pm e i ω p t [ e i[ φ( t )+ φ bias2 ] e i[ φ( tτ ) ω p τ ] e i[ φ( t )+ φ bias2 + π 2 ] + e i[ φ( tτ ) ω p τ+ π 2 ] ].
[ P o ( t ) P ¯ o ( t ) ][ E o ( t ) E o ( t ) E ¯ o ( t ) E ¯ o ( t ) ]= 1 2 | E pm | 2 [ 1sin[ φ( t )φ( tτ )+ ω p τ+ φ bias2 + π 2 ] 1+sin[ φ( t )φ( tτ )+ ω p τ+ φ bias2 + π 2 ] ].
[ i o ( t ) i ¯ o ( t ) ][ sin[ φ( t )φ( tτ )+ φ bias2 + ω p τ+ π 2 ] sin[ φ( t )φ( tτ )+ φ bias2 + ω p τ+ π 2 ] ].
[ i o ( t ) i ¯ o ( t ) ][ sin[ φ( t )φ( tτ ) ] ±sin[ φ( t )φ( tτ ) ] ][ [ φ( t )φ( tτ ) ] ±[ φ( t )φ( tτ ) ] ][ [ P s ( t ) P s ( tτ ) ] ±[ P s ( t ) P s ( tτ ) ] ]

Metrics