Abstract

We have demonstrated an integrated three terminal device for the modulation of the complex refractive index of a distributed feedback quantum cascade laser (QCL). The device comprises an active region to produce optical gain vertically stacked with a control region made of asymmetric coupled quantum wells (ACQW). The optical mode, centered on the gain region, has a small overlap also with the control region. Owing to the three terminals an electrical bias can be applied independently on both regions: on the laser for producing optical gain and on the ACQW for tuning the energy of the intersubband transition. This allows the control of the optical losses at the laser frequency as the absorption peak associated to the intersubband transition can be electrically brought in and out the laser transition. By using this function a laser modulation depth of about 400 mW can be achieved by injecting less than 1 mW in the control region. This is four orders of magnitude less than the electrical power needed using direct current modulation and set the basis for the realisation of electrical to optical transducers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
    [CrossRef]
  2. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
    [CrossRef]
  3. F. Capasso, C. Sirtori, and A. Y. Cho, “Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared,” IEEE J. Quantum Electron. 30(5), 1313–1326 (1994).
    [CrossRef]
  4. J. Teissier, S. Laurent, C. Sirtori, H. Debrégeas-Sillard, F. Lelarge, F. Brillouet, and R. Colombelli, “Integrated quantum cascade laser-modulator using vertically coupled cavities,” Appl. Phys. Lett. 94(21), 211105 (2009).
    [CrossRef]
  5. R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169 (2000).
    [CrossRef]
  6. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared Quantum Cascade Lasers,” Opt. Express 17(15), 12929–12943 (2009).
    [CrossRef] [PubMed]
  7. G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95(10), 101104 (2009).
    [CrossRef]
  8. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
    [CrossRef]
  9. E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
    [CrossRef]
  10. P. Holmström, P. Jänes, U. Ekenberg, and L. Thylén, “Efficient infrared electroabsorption with 1 V applied voltage swing using intersubband transitions,” Appl. Phys. Lett. 93(19), 191101 (2008).
    [CrossRef]
  11. Band structure: The layer sequence of one period in nanometer, is 3.1/1.7/3.1/1.6/2.8/1.8/2.4/2.4/2.4/2.4/2.6/4.1/1.7/1.0/5.3/1.2/5.2/1.2/4.4/2.1 where In0.52Al0.48As layers are in bold and the underlined numbers correspond to the doped layers (1017 cm−3).
  12. M. Helm, Intersubband Transitions in Quantum Wells: Physics and Device Applications I, edited by H. C. Liu and F. Capasso, (Academic, 2000), vol. 62, pp. 1–99.
  13. K. L. Campman, H. Schmidt, A. Imamoglu, and A. C. Gossard, “Interface roughness and alloy‐disorder scattering contributions to intersubband transition linewidths,” Appl. Phys. Lett. 69(17), 2554 (1996).
    [CrossRef]
  14. From top to buffer: GaInAs (5.1018cm−3, 300nm), InP (1.1017cm−3, 2.1µm), GaInAs(5.1016cm−3, 0.4µm), active region, GaInAs(5.1016cm−3, 0.4µm), InP(1.1017cm−3, 2µm), GaInAs (1.1017 cm−3, 500nm), 5 periods of coupled QW separated by 300Å of AlInAs, GaInAs (5.1016 cm−3, 1µm), InP (2.1017 cm−3, 2µm), buffer InP (1017 cm−3).
  15. E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
    [CrossRef]
  16. H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32(6), 1024–1028 (1996).
    [CrossRef]

2010

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

2009

J. Teissier, S. Laurent, C. Sirtori, H. Debrégeas-Sillard, F. Lelarge, F. Brillouet, and R. Colombelli, “Integrated quantum cascade laser-modulator using vertically coupled cavities,” Appl. Phys. Lett. 94(21), 211105 (2009).
[CrossRef]

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared Quantum Cascade Lasers,” Opt. Express 17(15), 12929–12943 (2009).
[CrossRef] [PubMed]

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[CrossRef]

2008

P. Holmström, P. Jänes, U. Ekenberg, and L. Thylén, “Efficient infrared electroabsorption with 1 V applied voltage swing using intersubband transitions,” Appl. Phys. Lett. 93(19), 191101 (2008).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[CrossRef]

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

2000

R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169 (2000).
[CrossRef]

1996

K. L. Campman, H. Schmidt, A. Imamoglu, and A. C. Gossard, “Interface roughness and alloy‐disorder scattering contributions to intersubband transition linewidths,” Appl. Phys. Lett. 69(17), 2554 (1996).
[CrossRef]

H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32(6), 1024–1028 (1996).
[CrossRef]

1994

F. Capasso, C. Sirtori, and A. Y. Cho, “Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared,” IEEE J. Quantum Electron. 30(5), 1313–1326 (1994).
[CrossRef]

Andrews, A. M.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[CrossRef]

Bai, Y.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

Baranov, A.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[CrossRef]

Belkin, M. A.

Belyanin, A.

Benveniste, E.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[CrossRef]

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[CrossRef]

Bethea, C. G.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

Brillouet, F.

J. Teissier, S. Laurent, C. Sirtori, H. Debrégeas-Sillard, F. Lelarge, F. Brillouet, and R. Colombelli, “Integrated quantum cascade laser-modulator using vertically coupled cavities,” Appl. Phys. Lett. 94(21), 211105 (2009).
[CrossRef]

Buchanan, M.

H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32(6), 1024–1028 (1996).
[CrossRef]

Campman, K. L.

K. L. Campman, H. Schmidt, A. Imamoglu, and A. C. Gossard, “Interface roughness and alloy‐disorder scattering contributions to intersubband transition linewidths,” Appl. Phys. Lett. 69(17), 2554 (1996).
[CrossRef]

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared Quantum Cascade Lasers,” Opt. Express 17(15), 12929–12943 (2009).
[CrossRef] [PubMed]

R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169 (2000).
[CrossRef]

F. Capasso, C. Sirtori, and A. Y. Cho, “Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared,” IEEE J. Quantum Electron. 30(5), 1313–1326 (1994).
[CrossRef]

Carras, M.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[CrossRef]

Chen, G.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

Cho, A. Y.

R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169 (2000).
[CrossRef]

F. Capasso, C. Sirtori, and A. Y. Cho, “Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared,” IEEE J. Quantum Electron. 30(5), 1313–1326 (1994).
[CrossRef]

Colombelli, R.

J. Teissier, S. Laurent, C. Sirtori, H. Debrégeas-Sillard, F. Lelarge, F. Brillouet, and R. Colombelli, “Integrated quantum cascade laser-modulator using vertically coupled cavities,” Appl. Phys. Lett. 94(21), 211105 (2009).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Darvish, S. R.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

Debrégeas-Sillard, H.

J. Teissier, S. Laurent, C. Sirtori, H. Debrégeas-Sillard, F. Lelarge, F. Brillouet, and R. Colombelli, “Integrated quantum cascade laser-modulator using vertically coupled cavities,” Appl. Phys. Lett. 94(21), 211105 (2009).
[CrossRef]

Delteil, A.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[CrossRef]

Devenson, J.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[CrossRef]

Diehl, L.

Dudek, R.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

Ekenberg, U.

P. Holmström, P. Jänes, U. Ekenberg, and L. Thylén, “Efficient infrared electroabsorption with 1 V applied voltage swing using intersubband transitions,” Appl. Phys. Lett. 93(19), 191101 (2008).
[CrossRef]

Gkortsas, V. M.

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169 (2000).
[CrossRef]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[CrossRef]

Gossard, A. C.

K. L. Campman, H. Schmidt, A. Imamoglu, and A. C. Gossard, “Interface roughness and alloy‐disorder scattering contributions to intersubband transition linewidths,” Appl. Phys. Lett. 69(17), 2554 (1996).
[CrossRef]

Grant, P.

Grant, P. D.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

Haffouz, S.

Ham, D.

Holmström, P.

P. Holmström, P. Jänes, U. Ekenberg, and L. Thylén, “Efficient infrared electroabsorption with 1 V applied voltage swing using intersubband transitions,” Appl. Phys. Lett. 93(19), 191101 (2008).
[CrossRef]

Hutchinson, A. L.

R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169 (2000).
[CrossRef]

Hwang, H. Y.

R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169 (2000).
[CrossRef]

Imamoglu, A.

K. L. Campman, H. Schmidt, A. Imamoglu, and A. C. Gossard, “Interface roughness and alloy‐disorder scattering contributions to intersubband transition linewidths,” Appl. Phys. Lett. 69(17), 2554 (1996).
[CrossRef]

Jänes, P.

P. Holmström, P. Jänes, U. Ekenberg, and L. Thylén, “Efficient infrared electroabsorption with 1 V applied voltage swing using intersubband transitions,” Appl. Phys. Lett. 93(19), 191101 (2008).
[CrossRef]

Kärtner, F. X.

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Kuznetsova, L.

Laurent, S.

J. Teissier, S. Laurent, C. Sirtori, H. Debrégeas-Sillard, F. Lelarge, F. Brillouet, and R. Colombelli, “Integrated quantum cascade laser-modulator using vertically coupled cavities,” Appl. Phys. Lett. 94(21), 211105 (2009).
[CrossRef]

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[CrossRef]

Lelarge, F.

J. Teissier, S. Laurent, C. Sirtori, H. Debrégeas-Sillard, F. Lelarge, F. Brillouet, and R. Colombelli, “Integrated quantum cascade laser-modulator using vertically coupled cavities,” Appl. Phys. Lett. 94(21), 211105 (2009).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Li, J.

H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32(6), 1024–1028 (1996).
[CrossRef]

Li, X.

Liu, H. C.

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared Quantum Cascade Lasers,” Opt. Express 17(15), 12929–12943 (2009).
[CrossRef] [PubMed]

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169 (2000).
[CrossRef]

H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32(6), 1024–1028 (1996).
[CrossRef]

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[CrossRef]

Manquest, C.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[CrossRef]

Marcadet, X.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[CrossRef]

Martini, R.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[CrossRef]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Paiella, R.

R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169 (2000).
[CrossRef]

Patel, C. K. N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[CrossRef]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Razeghi, M.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

Sagnes, I.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[CrossRef]

Schmidt, H.

K. L. Campman, H. Schmidt, A. Imamoglu, and A. C. Gossard, “Interface roughness and alloy‐disorder scattering contributions to intersubband transition linewidths,” Appl. Phys. Lett. 69(17), 2554 (1996).
[CrossRef]

Schneider, H.

Sirtori, C.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[CrossRef]

J. Teissier, S. Laurent, C. Sirtori, H. Debrégeas-Sillard, F. Lelarge, F. Brillouet, and R. Colombelli, “Integrated quantum cascade laser-modulator using vertically coupled cavities,” Appl. Phys. Lett. 94(21), 211105 (2009).
[CrossRef]

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[CrossRef]

F. Capasso, C. Sirtori, and A. Y. Cho, “Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared,” IEEE J. Quantum Electron. 30(5), 1313–1326 (1994).
[CrossRef]

Sivco, D. L.

R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169 (2000).
[CrossRef]

Slivken, S.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

Song, C. Y.

Strasser, G.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[CrossRef]

Teissier, J.

J. Teissier, S. Laurent, C. Sirtori, H. Debrégeas-Sillard, F. Lelarge, F. Brillouet, and R. Colombelli, “Integrated quantum cascade laser-modulator using vertically coupled cavities,” Appl. Phys. Lett. 94(21), 211105 (2009).
[CrossRef]

Teissier, R.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[CrossRef]

Teulon, F.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[CrossRef]

Thylén, L.

P. Holmström, P. Jänes, U. Ekenberg, and L. Thylén, “Efficient infrared electroabsorption with 1 V applied voltage swing using intersubband transitions,” Appl. Phys. Lett. 93(19), 191101 (2008).
[CrossRef]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[CrossRef]

Vasanelli, A.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[CrossRef]

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[CrossRef]

Wang, C. Y.

Wasilewski, Z. R.

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Appl. Phys. Lett.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

J. Teissier, S. Laurent, C. Sirtori, H. Debrégeas-Sillard, F. Lelarge, F. Brillouet, and R. Colombelli, “Integrated quantum cascade laser-modulator using vertically coupled cavities,” Appl. Phys. Lett. 94(21), 211105 (2009).
[CrossRef]

R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169 (2000).
[CrossRef]

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[CrossRef]

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[CrossRef]

P. Holmström, P. Jänes, U. Ekenberg, and L. Thylén, “Efficient infrared electroabsorption with 1 V applied voltage swing using intersubband transitions,” Appl. Phys. Lett. 93(19), 191101 (2008).
[CrossRef]

K. L. Campman, H. Schmidt, A. Imamoglu, and A. C. Gossard, “Interface roughness and alloy‐disorder scattering contributions to intersubband transition linewidths,” Appl. Phys. Lett. 69(17), 2554 (1996).
[CrossRef]

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[CrossRef]

Chem. Phys. Lett.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

IEEE J. Quantum Electron.

F. Capasso, C. Sirtori, and A. Y. Cho, “Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared,” IEEE J. Quantum Electron. 30(5), 1313–1326 (1994).
[CrossRef]

H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32(6), 1024–1028 (1996).
[CrossRef]

Opt. Express

Other

Band structure: The layer sequence of one period in nanometer, is 3.1/1.7/3.1/1.6/2.8/1.8/2.4/2.4/2.4/2.4/2.6/4.1/1.7/1.0/5.3/1.2/5.2/1.2/4.4/2.1 where In0.52Al0.48As layers are in bold and the underlined numbers correspond to the doped layers (1017 cm−3).

M. Helm, Intersubband Transitions in Quantum Wells: Physics and Device Applications I, edited by H. C. Liu and F. Capasso, (Academic, 2000), vol. 62, pp. 1–99.

From top to buffer: GaInAs (5.1018cm−3, 300nm), InP (1.1017cm−3, 2.1µm), GaInAs(5.1016cm−3, 0.4µm), active region, GaInAs(5.1016cm−3, 0.4µm), InP(1.1017cm−3, 2µm), GaInAs (1.1017 cm−3, 500nm), 5 periods of coupled QW separated by 300Å of AlInAs, GaInAs (5.1016 cm−3, 1µm), InP (2.1017 cm−3, 2µm), buffer InP (1017 cm−3).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Left: Schematic view of a three terminals device with a DFB on top. Right: conduction band (BC) profile of the AQW with the associated energy subbands and moduli squared of the wavefunctions: The wells are respectively 60 Å and 22 Å thick and separated by a 16 Å barrier.

Fig. 2
Fig. 2

Squares: Calculated intersubband transition energy E12 between the two first levels of AQW calculated as a function of bias applied on the wells. Dots: values extracted from the electroluminescence measurements.

Fig. 3
Fig. 3

1D simulation of the optical mode inside the acvity. In red is the optical intensity and in black the refractive index curve. The insert is a zoom on the control area overlap.

Fig. 4
Fig. 4

Light current voltage characteristics for two bias applied on the wells region. The V(I) curves are the same for the two different applied voltages Vwells.

Fig. 5
Fig. 5

(a) Laser threshold current density (squares, left) and current passing through the wells (right) as a function of the CW bias applied to the wells. (b) Optical modulation depth, ΔP as a function of the CW bias applied to the wells.

Fig. 6
Fig. 6

Electroluminescence of the device (J = 66% of Jth min) for several voltages applied on the wells.

Fig. 7
Fig. 7

(a) Spectrum of the DFB laser for three bias applied on the wells at constant laser driving. (b) Several spectrum at constant optical power. Added losses are compensated by increasing the driving current. The spectral resolution of the fast Fourrier infrared spectrometer is 0.25cm−1.

Fig. 8
Fig. 8

Estimated and experimental values of the absorption coefficient of the wells as a function of the bias applied on the wells. The black curve is the Gaussian fit of the experimental values.

Fig. 9
Fig. 9

Left axis: Experimental and estimated effective refractive index variation as a function of the bias applied on the wells. Right axis: black curve: electrical power injected into the wells. Blue curve: difference between the calculated index and the one observed experimentally.

Fig. 10
Fig. 10

Modulation depth as a function of the microwave frequency for two injected microwave powers. The black curve is a first order fit for the 0 dBm modulation depth curve. The equivalent electrical circuit of the electromodulator is shown in insert. It can be noticed that given position of the ground in the middle, the two parts are completely independent.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α wells (E)= n S e 2 2 ln2 ε 0 c n eff m * f 12 γ exp( ( E 12 E) 2 γ 2 ) Γ wells L wells
Δ λ DFB λ DFB = Δ n eff n eff
α wells =A( V wells )exp( ( E 12 ( V wells )E ) 2 γ 2 ) A( V wells )= n S e 2 2 ln2 ε 0 c n eff m * f 12 ( V wells ) γ Γ wells L wells

Metrics