Abstract

We demonstrate theoretically and experimentally that it is feasible to draw the microstructured fiber with longitudinally varying diameter (FLVD) whose diameter varies sharply in a short fiber length. It is elucidated that during the fiber drawing process the tension is linearly proportional to the natural logarithm of the fiber drawing speed. As a result, the tension is not so sensitive to the fiber diameter. Moreover, this sensitivity can be decreased by using a large diameter ratio of preform to fiber. Owing to the low sensitivity the FLVD with diameter varying sharply in a short fiber length can be drawn directly from the preform. Additionally we show that the microstructural geometry of FLVD does not depend on the varying diameter. The deformation in microstructural geometry is determined by the fiber segment with the smallest diameter. We fabricate a FLVD of which the diameter decreases by 75% in a fiber length of 10 cm. By using this fiber we demonstrate the 600-1800 nm supercontinuum (SC) generation and the 532 nm second harmonic generation pumped by a picosecond fiber laser. The SC spectra by the conventional fibers with the largest and the smallest diameters of the FLVD are also shown, respectively. The comparisons show that the FLVD has the broadest SC spectrum due to its high nonlinearity, varying dispersion, and high damage threshold.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864 –2869 (2004).
    [CrossRef] [PubMed]
  2. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  3. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express 15(9), 5431–5438 (2007).
    [CrossRef] [PubMed]
  4. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Investigation of single-mode–multimode–single-mode and single-mode–tapered-multimode–single-mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B 28(5), 1180–1186 (2011).
    [CrossRef]
  5. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U. C. Paek, and G. H. Yang, “Photonic crystal fiber coupler,” Opt. Lett. 27(10), 812–814 (2002).
    [CrossRef] [PubMed]
  6. A. I. Latkin, S. K. Turitsyn, and A. A. Sysoliatin, “Theory of parabolic pulse generation in tapered fiber,” Opt. Lett. 32(4), 331–333 (2007).
    [CrossRef] [PubMed]
  7. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
    [CrossRef]
  8. S. P. Stark, A. Podlipensky, and P. St. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett. 106(8), 083903 (2011).
    [CrossRef] [PubMed]
  9. H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2–3), 377–387 (2005).
    [CrossRef]
  10. Y. K. Lizé, E. C. Mägi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12(14), 3209–3217 (2004).
    [CrossRef] [PubMed]
  11. A. Kudlinski and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett. 33(20), 2407–2409 (2008).
    [CrossRef] [PubMed]
  12. A. A. Sysoliatin, A. K. Senatorov, A. I. Konyukhov, L. A. Melnikov, and V. A. Stasyuk, “Soliton fission management by dispersion oscillating fiber,” Opt. Express 15(25), 16302–16307 (2007).
    [CrossRef] [PubMed]
  13. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
    [CrossRef] [PubMed]
  14. S. Middleman, The Flow of High Polymers (Interscience, 1968), Ch. 1.
  15. M. Liao, X. Yan, Z. Duan, T. Suzuki, and Y. Ohishi, “Tellurite photonic nanostructured fiber,” J. Lightwave Technol. 29(7), 1018–1025 (2011).
    [CrossRef]
  16. W. Burns, M. Abebe, C. Villarruel, and R. P. Moeller, “Loss mechanisms in single-mode fiber tapers,” J. Lightwave Technol. 4(6), 608–613 (1986).
    [CrossRef]
  17. W. Margulis and U. Osterberg, “Second-harmonic generation in optical glass fibers,” J. Opt. Soc. Am. B 5(2), 312–316 (1988).
    [CrossRef]
  18. B. Lesche, “Microscopic model of second-harmonic generation in glass fibers,” J. Opt. Soc. Am. B 7(1), 53–56 (1990).
    [CrossRef]
  19. D. M. Krol and J. R. Simpson, “Photoinduced second-harmonic generation in rare-earth-doped aluminosilicate optical fibers,” Opt. Lett. 16(21), 1650–1652 (1991).
    [CrossRef] [PubMed]
  20. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  21. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [CrossRef]

2011 (4)

2010 (1)

2008 (2)

2007 (3)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

2005 (1)

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2–3), 377–387 (2005).
[CrossRef]

2004 (2)

2002 (1)

2001 (1)

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

1991 (1)

1990 (1)

1988 (1)

1986 (1)

W. Burns, M. Abebe, C. Villarruel, and R. P. Moeller, “Loss mechanisms in single-mode fiber tapers,” J. Lightwave Technol. 4(6), 608–613 (1986).
[CrossRef]

Abebe, M.

W. Burns, M. Abebe, C. Villarruel, and R. P. Moeller, “Loss mechanisms in single-mode fiber tapers,” J. Lightwave Technol. 4(6), 608–613 (1986).
[CrossRef]

Aggarwal, I. D.

Balykin, V. I.

Birks, T. A.

Bolger, J. A.

Brambilla, G.

Burns, W.

W. Burns, M. Abebe, C. Villarruel, and R. P. Moeller, “Loss mechanisms in single-mode fiber tapers,” J. Lightwave Technol. 4(6), 608–613 (1986).
[CrossRef]

Chandalia, J. K.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

Clarkson, W. A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Dekker, S. A.

Ding, M.

Domachuk, P.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2–3), 377–387 (2005).
[CrossRef]

Duan, Z.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Eggleton, B. J.

Eom, J. B.

Farrell, G.

Fu, L.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Hakuta, K.

Hudson, D. D.

Jackson, S. D.

Judge, A. C.

Kien, F. L.

Kim, J.

Konyukhov, A. I.

Kosinski, S. G.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

Krol, D. M.

Kudlinski, A.

Kuhlmey, B. T.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2–3), 377–387 (2005).
[CrossRef]

Lamont, M. R. E.

Latkin, A. I.

Lee, B. H.

Leon-Saval, S. G.

Lesche, B.

Li, E.

Liao, M.

Liu, X.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

Lizé, Y. K.

Magi, E. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2–3), 377–387 (2005).
[CrossRef]

Mägi, E. C.

Margulis, W.

Mason, M. W.

Melentiev, P. N.

Melnikov, L. A.

Moeller, R. P.

W. Burns, M. Abebe, C. Villarruel, and R. P. Moeller, “Loss mechanisms in single-mode fiber tapers,” J. Lightwave Technol. 4(6), 608–613 (1986).
[CrossRef]

Moon, D. S.

Morinaga, M.

Mussot, A.

Nayak, K. P.

Nguyen, H. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2–3), 377–387 (2005).
[CrossRef]

Nilsson, J.

Ohishi, Y.

Osterberg, U.

Paek, U. C.

Podlipensky, A.

S. P. Stark, A. Podlipensky, and P. St. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett. 106(8), 083903 (2011).
[CrossRef] [PubMed]

Richardson, D. J.

Roelens, M. A. F.

Sanghera, J. S.

Semenova, Y.

Senatorov, A. K.

Shaw, L. B.

Simpson, J. R.

Smith, C. L.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2–3), 377–387 (2005).
[CrossRef]

St. J. Russell, P.

S. P. Stark, A. Podlipensky, and P. St. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett. 106(8), 083903 (2011).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864 –2869 (2004).
[CrossRef] [PubMed]

Stark, S. P.

S. P. Stark, A. Podlipensky, and P. St. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett. 106(8), 083903 (2011).
[CrossRef] [PubMed]

Stasyuk, V. A.

Steel, M. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2–3), 377–387 (2005).
[CrossRef]

Steinvurzel, P.

Suzuki, T.

Sysoliatin, A. A.

Ta’eed, V. G.

Turitsyn, S. K.

Villarruel, C.

W. Burns, M. Abebe, C. Villarruel, and R. P. Moeller, “Loss mechanisms in single-mode fiber tapers,” J. Lightwave Technol. 4(6), 608–613 (1986).
[CrossRef]

Wadsworth, W. J.

Wang, P.

Windeler, R. S.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

Wu, Q.

Xu, C.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

Yan, X.

Yang, G. H.

Yeom, D. I.

Appl. Phys. B (1)

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2–3), 377–387 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

J. Lightwave Technol. (2)

W. Burns, M. Abebe, C. Villarruel, and R. P. Moeller, “Loss mechanisms in single-mode fiber tapers,” J. Lightwave Technol. 4(6), 608–613 (1986).
[CrossRef]

M. Liao, X. Yan, Z. Duan, T. Suzuki, and Y. Ohishi, “Tellurite photonic nanostructured fiber,” J. Lightwave Technol. 29(7), 1018–1025 (2011).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

S. P. Stark, A. Podlipensky, and P. St. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett. 106(8), 083903 (2011).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other (1)

S. Middleman, The Flow of High Polymers (Interscience, 1968), Ch. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A schematic diagram of a preform with neck region.

Fig. 2
Fig. 2

A spool of the fabricated FLVD. Inset is a close-up.

Fig. 3
Fig. 3

Dependence of ρ on N. The blue curve was drawn based on calculation. The red dots are drawn based on the experimental results.

Fig. 4
Fig. 4

Optical microscope images of the cross sections of the preforms and FLVDs. Fiber b and c are from a segment of the FLVD drawn by using preform a. Fiber e and f are from a segment of the FLVD drawn by using preform d.

Fig. 5
Fig. 5

The calculated dispersion curves of the FLVD and the core diameters along the fiber length. The core diameters are predicted from the outside diameters.

Fig. 6
Fig. 6

Measured pump-pulse-energy-dependent SC spectra by various fibers: (a) by the FLVD; (b) by the 3.2 μm core diameter fiber; (c) by the 0.8 μm core diameter fiber. The curve is displaced by 15 dB. The launched pulse energy is shown on the right side. On the horizontal axis of (a), the minor ticks before and after 520 correspond to 500, and 540, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d= V p V f D
F= 3 4 πη d 2 d V f dz
Fdz= 3 4 πη D 2 V p d V f V f
F= 3 4l πη D 2 V p ln( V f V p )
ρ= F ' F F = lnN ln V f V p
ρ= lnN 2ln D d
ξ=( 1 1 2KσΔt r 0 2 )( 2 ( 1 Dtanα 4( r 0 2 Kσ 2Δt ) V p ) 1 )
η 1 η 2 = F 1 ln( D d 2 ) F 2 ln( D d 1 ) <1
θ c =arccos( n 1 n 2 )arccos( n eff n 2 )

Metrics