Abstract

We propose a novel “orthogonal” TDM transmission scheme using an optical Nyquist pulse that enables us to achieve an ultrahigh data rate and spectral efficiency simultaneously without any intersymbol interference (ISI). We analytically describe the principle of orthogonal TDM, and demonstrate a 160 Gbaud optical orthogonal TDM transmission using 40 GHz optical Nyquist pulses. Tolerance to GVD and the dispersion slope is significantly improved by virtue of the orthogonality, reduced bandwidth, and minimum ISI.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Weber and M. Nakazawa, Ultrahigh-Speed Optical Transmission Technology (Springer, 2007).
  2. C. Zhang, Y. Mori, M. Usui, K. Igarashi, K. Katoh, and K. Kikuchi, “Straight-line 1,073-km transmission of 640-Gbit/s dual-polarization QPSK signals on a single carrier,” in 35th European Conference on Optical Communication, 2009. ECOC '09 (2009), paper PD2.8.
  3. K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photon. Technol. Lett. 22(8), 562–564 (2010).
    [CrossRef]
  4. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.
  5. H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electric. Eng. 47, 617–644 (1928).
  6. K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
    [CrossRef]
  7. S. Okamoto, K. Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper PD2.3.
  8. X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s, 50-GHz spaced, PDM-32QAM transmission over 400 km and one 50 GHz-grid ROADM,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB3.
  9. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
    [CrossRef]
  10. K. Igarashi, Y. Mori, K. Katoh, and K. Kikuchi, “Bit-error rate performance of Nyquist wavelength-division multiplexed quadrature phase-shift keying optical signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMR6.
  11. J. Zhao and A. Ellis, “Electronic impairment mitigation in optically multiplexed multicarrier systems,” J. Lightwave Technol. 29(3), 278–290 (2011).
    [CrossRef]
  12. R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9x138Gb/s pre-filtered PM-8QAM signals over 4,000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
    [CrossRef]
  13. J. G. Proakis, Digital Communications, 5th ed. (McGraw Hill, 2007).
  14. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
  15. M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
    [CrossRef]

2011

2010

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photon. Technol. Lett. 22(8), 562–564 (2010).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

2008

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[CrossRef]

2000

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
[CrossRef]

1928

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electric. Eng. 47, 617–644 (1928).

Bosco, G.

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9x138Gb/s pre-filtered PM-8QAM signals over 4,000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Caponio, N. P.

Carena, A.

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9x138Gb/s pre-filtered PM-8QAM signals over 4,000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Cigliutti, R.

Curri, V.

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9x138Gb/s pre-filtered PM-8QAM signals over 4,000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Ellis, A.

Forghieri, F.

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9x138Gb/s pre-filtered PM-8QAM signals over 4,000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Goto, H.

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[CrossRef]

Guan, P.

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photon. Technol. Lett. 22(8), 562–564 (2010).
[CrossRef]

Hirooka, T.

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photon. Technol. Lett. 22(8), 562–564 (2010).
[CrossRef]

Hongo, J.

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[CrossRef]

Kasai, K.

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photon. Technol. Lett. 22(8), 562–564 (2010).
[CrossRef]

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[CrossRef]

Nakazawa, M.

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photon. Technol. Lett. 22(8), 562–564 (2010).
[CrossRef]

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[CrossRef]

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
[CrossRef]

Nyquist, H.

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electric. Eng. 47, 617–644 (1928).

Omiya, T.

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photon. Technol. Lett. 22(8), 562–564 (2010).
[CrossRef]

Poggiolini, P.

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9x138Gb/s pre-filtered PM-8QAM signals over 4,000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Sasaki, T.

Torrengo, E.

Yamamoto, Y.

Yoshida, E.

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
[CrossRef]

Yoshida, M.

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photon. Technol. Lett. 22(8), 562–564 (2010).
[CrossRef]

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[CrossRef]

Zhao, J.

IEEE Photon. Technol. Lett.

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photon. Technol. Lett. 22(8), 562–564 (2010).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
[CrossRef]

IEICE Electron. Express

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[CrossRef]

J. Lightwave Technol.

Trans. Am. Inst. Electric. Eng.

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electric. Eng. 47, 617–644 (1928).

Other

S. Okamoto, K. Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper PD2.3.

X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s, 50-GHz spaced, PDM-32QAM transmission over 400 km and one 50 GHz-grid ROADM,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB3.

K. Igarashi, Y. Mori, K. Katoh, and K. Kikuchi, “Bit-error rate performance of Nyquist wavelength-division multiplexed quadrature phase-shift keying optical signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMR6.

J. G. Proakis, Digital Communications, 5th ed. (McGraw Hill, 2007).

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.

H. G. Weber and M. Nakazawa, Ultrahigh-Speed Optical Transmission Technology (Springer, 2007).

C. Zhang, Y. Mori, M. Usui, K. Igarashi, K. Katoh, and K. Kikuchi, “Straight-line 1,073-km transmission of 640-Gbit/s dual-polarization QPSK signals on a single carrier,” in 35th European Conference on Optical Communication, 2009. ECOC '09 (2009), paper PD2.8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Comparison of the conventional Nyquist filtering technique (a) and the proposed orthogonal TDM using an optical Nyquist pulse (b).

Fig. 2
Fig. 2

Waveform (a) and spectrum (b) of a Nyquist pulse with α = 0, 0.5, and 1.

Fig. 3
Fig. 3

Pulse width Δτ, spectral width Δν (a) and time-bandwidth product ΔτΔν (b) of the Nyquist pulse as a function of the roll-off factor α.

Fig. 4
Fig. 4

Relationship between g(t) and gn (a) and the detection of gn with a narrow optical gate (b).

Fig. 5
Fig. 5

Experimental setup for 160 Gbaud optical orthogonal TDM transmission using an optical Nyquist pulse. MLFL: Mode-locked Fiber Laser, PPG: Pulse Pattern Generator. Other abbreviations are defined in the text.

Fig. 6
Fig. 6

Waveform (a) and spectrum (b) of 40 GHz optical Nyquist pulse for 160 Gbaud transmission, and its 160 Gbaud OTDM waveform (c). (d) is a numerical calculation corresponding to (c).

Fig. 7
Fig. 7

Demultiplexed 40 Gbaud pulse waveforms (a) before and (b) after demodulation from DPSK to OOK.

Fig. 8
Fig. 8

160 Gbaud Nyquist (a) and Gaussian (b) pulses distorted by GVD. The figures on the right show the corresponding waveforms obtained by a numerical simulation.

Fig. 9
Fig. 9

BER measurement for GVD-distorted 160 Gbaud Nyquist and Gaussian OTDM signals (Open circles: back-to-back, closed symbols: GVD-distorted). Four different symbols (circles, squares, diamonds, and triangles) correspond to different 40 Gbit/s tributaries.

Fig. 10
Fig. 10

160 Gbaud Nyquist (left) and Gaussian (right) pulses distorted by TOD with (a) 12.3, (b) 15.4, and (c) 18.5 ps/nm2.

Fig. 11
Fig. 11

Numerical simulation of 160 Gbaud Nyquist (left) and Gaussian (right) pulse distortion due to TOD with (a) 12.3, (b) 15.4, and (c) 18.5 ps/nm2.

Fig. 12
Fig. 12

BER measurement for TOD-distorted 160 Gbaud Nyquist and Gaussian OTDM signals (Open circles: back-to-back, closed symbols: TOD-distorted). Different symbols correspond to different TOD values.

Fig. 13
Fig. 13

Comparison of Nyquist and Gaussian pulses (red and blue curves, respectively) having the same spectral width (20 dB bandwidth). The inset shows their spectral profile.

Tables (1)

Tables Icon

Table 1 Comparison of orthogonal TDM and OFDM

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r(t)= sin(πt/T) πt/T cos(απt/T) 1 (2αt/T) 2 , R(f)={ T, 0|f| 1α 2T T 2 { 1sin[ π 2α (2T|f|1) ] }, 1α 2T |f| 1+α 2T 0, |f| 1+α 2T
Δν=[1+(2α/π) sin 1 (1 2 )]/T=(10.272α)/T
g(t)= n g(nT) ϕ n (t)
1 T ϕ n (t) ϕ m (t)dt ={ 0(nm) 1(n=m)
g n = 1 T g(t) ϕ n (t)dt
1 T φ n (t) φ m (t)dt = 3 8 (1+α)sinc[ π(1+α)(mn) ]+ 5 8 (1α)sinc[ π(1α)(mn) ] α 8 cos[ π(mn) ]{ sinc[ π(1+α(mn)) ]+sinc[ π(1α(mn)) ] }

Metrics