Abstract

A flexible curled optical cord is useful for a common-path optical coherence tomography (OCT) system because a bending-insensitive arbitrary length can be chosen for the endoscopic imaging probe. However, there has been a critical problem that the partial reflector needs to be placed in between the sample and the objective lens. It limits the structure design of optical probe and leads to a low transverse resolution OCT imaging. Instead of a conventional single common-path interferometer, we propose a novel double common-path interferometer configuration in order to generate an interference signal that is independent of the optical distance between the partial reflector and sample. Due to the limitless tuning of the objective distance, an objective lens with a high numerical aperture (NA) up to 0.85 can be successfully used for phase-sensitive optical coherence tomography to achieve a 3-dimensional profile image of a transverse resolution of 0.7 μm. The intensity and phase terms of the interference signal can be obtained simultaneously from a Fourier-domain mode locked swept laser source for fast data acquisition with a phase stability of 979 pm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12(3), 158–160 (1987).
    [CrossRef] [PubMed]
  3. J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, “Flexible curled optical cord for bending-insensitive optical imaging delivery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1031–1038 (2010).
    [CrossRef]
  4. U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
    [CrossRef]
  5. J. S. Park, M. Y. Jeong, and C. S. Kim, “Post-tuning of sample position in common-path swept source optical coherence tomography,” J. Opt. Soc. Korea 15, (2011), to be published.
  6. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42(34), 6953–6958 (2003).
    [CrossRef] [PubMed]
  7. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Express 14(5), 1878–1887 (2006).
    [CrossRef] [PubMed]
  8. J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
    [CrossRef]
  9. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 (2007).
    [CrossRef] [PubMed]
  10. J. H. Lee, E. J. Jung, and C. S. Kim, “Optical coherence tomography based on a continuous wave supercontinuum seeded by erbium doped fiber’s amplified spontaneous emission,” J. Opt. Soc. Korea 14(1), 49–54 (2010).
    [CrossRef]
  11. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007).
    [CrossRef] [PubMed]
  12. J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34(21), 3442–3444 (2009).
    [CrossRef] [PubMed]
  13. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [CrossRef] [PubMed]
  14. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
    [CrossRef] [PubMed]
  15. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express 13(3), 695–701 (2005).
    [CrossRef] [PubMed]
  16. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  17. S. H. Yun and B. E. Bouma, “Wavelength swept lasers,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008).
  18. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
    [CrossRef] [PubMed]
  19. D. Kim and Y. J. Cho, “3-Dsurface profile measurement using an acousto optic tunable filter based spectral phase shifting technique,” J. Opt. Soc. Korea. 12(4), 281–287 (2008).
    [CrossRef]

2011

J. S. Park, M. Y. Jeong, and C. S. Kim, “Post-tuning of sample position in common-path swept source optical coherence tomography,” J. Opt. Soc. Korea 15, (2011), to be published.

2010

J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, “Flexible curled optical cord for bending-insensitive optical imaging delivery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1031–1038 (2010).
[CrossRef]

J. H. Lee, E. J. Jung, and C. S. Kim, “Optical coherence tomography based on a continuous wave supercontinuum seeded by erbium doped fiber’s amplified spontaneous emission,” J. Opt. Soc. Korea 14(1), 49–54 (2010).
[CrossRef]

2009

2008

D. Kim and Y. J. Cho, “3-Dsurface profile measurement using an acousto optic tunable filter based spectral phase shifting technique,” J. Opt. Soc. Korea. 12(4), 281–287 (2008).
[CrossRef]

2007

2006

2005

2004

2003

1996

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1987

Adler, D. C.

Aguirre, A. D.

Akkin, T.

Barton, J. K.

Bouma, B. E.

Carr, S.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

Cho, Y. J.

D. Kim and Y. J. Cho, “3-Dsurface profile measurement using an acousto optic tunable filter based spectral phase shifting technique,” J. Opt. Soc. Korea. 12(4), 281–287 (2008).
[CrossRef]

Choma, M. A.

Creazzo, T. L.

Davies, D. E. N.

de Boer, J. F.

Drexler, W.

Ellerbee, A. K.

Endo, T.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fried, N. M.

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[CrossRef]

Fujimoto, J.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Han, Y. G.

J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, “Flexible curled optical cord for bending-insensitive optical imaging delivery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1031–1038 (2010).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, S. W.

Huber, R.

Huber, R. A.

Itoh, M.

Izatt, J. A.

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

Jeong, M. Y.

J. S. Park, M. Y. Jeong, and C. S. Kim, “Post-tuning of sample position in common-path swept source optical coherence tomography,” J. Opt. Soc. Korea 15, (2011), to be published.

J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, “Flexible curled optical cord for bending-insensitive optical imaging delivery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1031–1038 (2010).
[CrossRef]

Joo, C.

Jung, C. H.

J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, “Flexible curled optical cord for bending-insensitive optical imaging delivery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1031–1038 (2010).
[CrossRef]

Jung, E. J.

Kane, D. J.

Kang, H. J.

J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, “Flexible curled optical cord for bending-insensitive optical imaging delivery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1031–1038 (2010).
[CrossRef]

Kang, J. U.

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[CrossRef]

Kim, C. S.

J. S. Park, M. Y. Jeong, and C. S. Kim, “Post-tuning of sample position in common-path swept source optical coherence tomography,” J. Opt. Soc. Korea 15, (2011), to be published.

J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, “Flexible curled optical cord for bending-insensitive optical imaging delivery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1031–1038 (2010).
[CrossRef]

J. H. Lee, E. J. Jung, and C. S. Kim, “Optical coherence tomography based on a continuous wave supercontinuum seeded by erbium doped fiber’s amplified spontaneous emission,” J. Opt. Soc. Korea 14(1), 49–54 (2010).
[CrossRef]

Kim, D.

D. Kim and Y. J. Cho, “3-Dsurface profile measurement using an acousto optic tunable filter based spectral phase shifting technique,” J. Opt. Soc. Korea. 12(4), 281–287 (2008).
[CrossRef]

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

Lee, J. H.

Lee, S. B.

J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, “Flexible curled optical cord for bending-insensitive optical imaging delivery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1031–1038 (2010).
[CrossRef]

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Makita, S.

Ouh, C. H.

J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, “Flexible curled optical cord for bending-insensitive optical imaging delivery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1031–1038 (2010).
[CrossRef]

Park, B. H.

Park, J. S.

J. S. Park, M. Y. Jeong, and C. S. Kim, “Post-tuning of sample position in common-path swept source optical coherence tomography,” J. Opt. Soc. Korea 15, (2011), to be published.

J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, “Flexible curled optical cord for bending-insensitive optical imaging delivery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1031–1038 (2010).
[CrossRef]

Peterson, K. A.

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rao, B.

Sattman, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sharma, U.

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[CrossRef]

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Tumlinson, A. R.

Unterhuber, A.

Vakhtin, A. B.

Wang, H. W.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

Wojtkowski, M.

Wood, W. R.

Yang, C.

Yasuno, Y.

Yatagai, T.

Youngquist, R. C.

Yu, L.

Yun, S. H.

Zhang, J.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, “Flexible curled optical cord for bending-insensitive optical imaging delivery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1031–1038 (2010).
[CrossRef]

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[CrossRef]

J. Opt. Soc. Korea

J. S. Park, M. Y. Jeong, and C. S. Kim, “Post-tuning of sample position in common-path swept source optical coherence tomography,” J. Opt. Soc. Korea 15, (2011), to be published.

J. H. Lee, E. J. Jung, and C. S. Kim, “Optical coherence tomography based on a continuous wave supercontinuum seeded by erbium doped fiber’s amplified spontaneous emission,” J. Opt. Soc. Korea 14(1), 49–54 (2010).
[CrossRef]

J. Opt. Soc. Korea.

D. Kim and Y. J. Cho, “3-Dsurface profile measurement using an acousto optic tunable filter based spectral phase shifting technique,” J. Opt. Soc. Korea. 12(4), 281–287 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

S. H. Yun and B. E. Bouma, “Wavelength swept lasers,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the conventional OCT setup based on a Mach-Zehnder interferometer and a curled optical fiber probe. (b) Variation of OCT image quality depending on the polarization state by tuning polarization controllers.

Fig. 2
Fig. 2

(a) Schematic of the conventional OCT setup based on a conventional common-path interferometer and a curled optical fiber probe. (b) Variation of OCT image quality depending on the objective distance by moving the position of the partial reflector.

Fig. 3
Fig. 3

Schematic of the proposed double common-path OCT setup.

Fig. 4
Fig. 4

Schematic of a phase-sensitive OCT probe based on the double common-path interferometer setup, as shown in Fig. 3.

Fig. 5
Fig. 5

Maintaining OCT image quality for different objective distances of (a) 6 mm and (b) 16 mm, respectively, using the proposed double common-path OCT system with a low NA objective lens (NA = 0.1).

Fig. 6
Fig. 6

Conventional phase-sensitive OCT (NA = 0.4) measures (a) en-face OCM image and (c) time trace of displacement; double common-path phase-sensitive OCT (NA = 0.85) measures (b) en-face OCM image and (d) time trace of displacement.

Fig. 7
Fig. 7

3D phase-contrast surface profile images of (a) group 7, (b) enlargement of elements 5, 6 of the USAF 1951 resolution target, (c) a hologram pattern with 100 × 100 μm2 area, and (d) enlargement of the marked region (20 × 20 μm2).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 1 = E R + E S = R R e j2 ω c n F l R + R S e j2 ω c ( n F l R + n A d 1 )
E 2 = E R1 + E S1 + E R2 + E S2 = R R R P e j2 ω c ( n F l R + n F l P ) + R S R P e j2 ω c ( n F l R + n F l P + n A d 1 ) + R R R M e j2 ω c ( n F l R + n F l P + n A d 2 ) + R S R M e j2 ω c ( n F l R + n F l P + n A d 1 + n A d 2 )
I=ρ ( E R1 + E S1 + E R2 + E S2 ) ( E R1 + E S1 + E R2 + E S2 ) *
I R R R S R P R M cos( 2 ω c n A ( d 1 d 2 ) )

Metrics