Abstract

We present a study of optically bound matter formation in a counter-propagating evanescent field, exploiting total internal reflection on a prism surface. Small ensembles of silica microspheres are assembled in a controlled manner using optical tweezers. The structures and dynamics of the resulting optically bound chains are interpreted using a simulation implementing generalized Lorentz-Mie theory. In particular, we observe enhancement of the scattering force along the propagation direction of the optically bound colloidal chains leading to a microscopic analogue of a driven pendulum which, at least superficially, resembles Newton’s cradle.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dholakia and P. Zemánek, “Gripped by light: Optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
    [CrossRef]
  2. C. D. Mellor, J. Leckner, and C. D. Bain, “Pattern formation in evanescent wave optical traps,” Proc. SPIE 5930, 59301C, 59301C-10 (2005).
    [CrossRef]
  3. C. D. Mellor and C. D. Bain, “Array formation in evanescent waves,” ChemPhysChem 7(2), 329–332 (2006).
    [CrossRef] [PubMed]
  4. M. Šiler, M. Sery, T. Cizmar, and P. Zemanek, “Submicron particle localization using evanescent field,” Proc. SPIE 5930, 59300R, 59300R-9 (2005).
    [CrossRef]
  5. M. Šiler, T. Cizmar, M. Sery, and P. Zemanek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84(1-2), 157–165 (2006).
    [CrossRef]
  6. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17(11), 772–774 (1992).
    [CrossRef] [PubMed]
  7. M. Gu, J.-B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236 (2004).
    [CrossRef]
  8. C. D. Mellor, T. A. Fennerty, and C. D. Bain, “Polarization effects in optically bound particle arrays,” Opt. Express 14(21), 10079–10088 (2006).
    [CrossRef] [PubMed]
  9. P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88(22), 221116 (2006).
    [CrossRef]
  10. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
    [CrossRef]
  11. M. D. Summers, R. D. Dear, J. M. Taylor, and G. A. D. Ritchie, “Controlled formation of optically bound matter in evanescent fields,” Proc. SPIE 7762, 776213, 776213-8 (2010).
    [CrossRef]
  12. N. J. van Leeuwen, L. J. Moore, W. D. Partridge, R. Peverall, G. A. D. Ritchie, and M. D. Summers, “Near-field optical trapping with an actively-locked cavity,” J. Opt. 13(4), 044007 (2011).
    [CrossRef]
  13. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [CrossRef] [PubMed]
  14. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
    [CrossRef] [PubMed]
  15. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249(4970), 749–754 (1990).
    [CrossRef] [PubMed]
  16. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
    [CrossRef] [PubMed]
  17. N. K. Metzger, K. Dholakia, and E. M. Wright, “Observation of bistability and hysteresis in optical binding of two dielectric spheres,” Phys. Rev. Lett. 96(6), 068102 (2006).
    [CrossRef] [PubMed]
  18. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18(21), 1867–1869 (1993).
    [CrossRef] [PubMed]
  19. M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96(14), 143902 (2006).
    [CrossRef] [PubMed]
  20. V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical Levitation in a Bessel Light Beam,” Appl. Phys. Lett. 85(18), 4001 (2004).
    [CrossRef]
  21. V. Karásek, O. Brzobohaty, and P. Zemanek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt. 11(3), 034009 (2009).
    [CrossRef]
  22. J. M. Taylor and G. D. Love, “Optical binding mechanisms: a conceptual model for Gaussian beam traps,” Opt. Express 17(17), 15381–15389 (2009).
    [CrossRef] [PubMed]
  23. P. C. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64(3), 035422 (2001).
    [CrossRef]
  24. Y. L. Xu and B. A. S. Gustafson, “Comparison between multisphere light-scattering calculations: rigorous solution and discrete-dipole approximation,” Astrophys. J. 513(2), 894–909 (1999).
    [CrossRef]
  25. J. M. Taylor, L. Y. Wong, C. D. Bain, and G. D. Love, “Emergent properties in optically bound matter,” Opt. Express 16(10), 6921–6929 (2008).
    [CrossRef] [PubMed]
  26. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
    [CrossRef]
  27. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. Lond. A 433(1889), 599–614 (1991).
    [CrossRef]
  28. H. Chew, D.-S. Wang, and M. Kerker, “Elastic scattering of evanescent electromagnetic waves,” Appl. Opt. 18(15), 2679–2687 (1979).
    [CrossRef] [PubMed]
  29. E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antenn. Propag. 41(3), 295–303 (1993).
    [CrossRef]
  30. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  31. S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108(1-3), 133–143 (1994).
    [CrossRef]
  32. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8(3), 483–489 (1991).
    [CrossRef]
  33. D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 770–788 (2008).
    [CrossRef]
  34. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions (Dover, 1972).
  35. P. Zemanek, A. Jonas, P. Jakl, J. Jezek, M. Sery, and M. Liska, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220(4-6), 401–412 (2003).
    [CrossRef]
  36. J. Lekner, “Force on a scatterer in counter-propagating coherent beams,” J. Opt. A, Pure Appl. Opt. 7(5), 238–248 (2005).
    [CrossRef]
  37. V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
    [CrossRef] [PubMed]

2011 (1)

N. J. van Leeuwen, L. J. Moore, W. D. Partridge, R. Peverall, G. A. D. Ritchie, and M. D. Summers, “Near-field optical trapping with an actively-locked cavity,” J. Opt. 13(4), 044007 (2011).
[CrossRef]

2010 (2)

M. D. Summers, R. D. Dear, J. M. Taylor, and G. A. D. Ritchie, “Controlled formation of optically bound matter in evanescent fields,” Proc. SPIE 7762, 776213, 776213-8 (2010).
[CrossRef]

K. Dholakia and P. Zemánek, “Gripped by light: Optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[CrossRef]

2009 (2)

V. Karásek, O. Brzobohaty, and P. Zemanek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt. 11(3), 034009 (2009).
[CrossRef]

J. M. Taylor and G. D. Love, “Optical binding mechanisms: a conceptual model for Gaussian beam traps,” Opt. Express 17(17), 15381–15389 (2009).
[CrossRef] [PubMed]

2008 (3)

J. M. Taylor, L. Y. Wong, C. D. Bain, and G. D. Love, “Emergent properties in optically bound matter,” Opt. Express 16(10), 6921–6929 (2008).
[CrossRef] [PubMed]

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 770–788 (2008).
[CrossRef]

2006 (7)

M. Šiler, T. Cizmar, M. Sery, and P. Zemanek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84(1-2), 157–165 (2006).
[CrossRef]

M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96(14), 143902 (2006).
[CrossRef] [PubMed]

C. D. Mellor, T. A. Fennerty, and C. D. Bain, “Polarization effects in optically bound particle arrays,” Opt. Express 14(21), 10079–10088 (2006).
[CrossRef] [PubMed]

C. D. Mellor and C. D. Bain, “Array formation in evanescent waves,” ChemPhysChem 7(2), 329–332 (2006).
[CrossRef] [PubMed]

N. K. Metzger, K. Dholakia, and E. M. Wright, “Observation of bistability and hysteresis in optical binding of two dielectric spheres,” Phys. Rev. Lett. 96(6), 068102 (2006).
[CrossRef] [PubMed]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88(22), 221116 (2006).
[CrossRef]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[CrossRef]

2005 (3)

M. Šiler, M. Sery, T. Cizmar, and P. Zemanek, “Submicron particle localization using evanescent field,” Proc. SPIE 5930, 59300R, 59300R-9 (2005).
[CrossRef]

C. D. Mellor, J. Leckner, and C. D. Bain, “Pattern formation in evanescent wave optical traps,” Proc. SPIE 5930, 59301C, 59301C-10 (2005).
[CrossRef]

J. Lekner, “Force on a scatterer in counter-propagating coherent beams,” J. Opt. A, Pure Appl. Opt. 7(5), 238–248 (2005).
[CrossRef]

2004 (3)

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical Levitation in a Bessel Light Beam,” Appl. Phys. Lett. 85(18), 4001 (2004).
[CrossRef]

M. Gu, J.-B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236 (2004).
[CrossRef]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

2003 (1)

P. Zemanek, A. Jonas, P. Jakl, J. Jezek, M. Sery, and M. Liska, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220(4-6), 401–412 (2003).
[CrossRef]

2002 (1)

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[CrossRef] [PubMed]

2001 (1)

P. C. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64(3), 035422 (2001).
[CrossRef]

1999 (1)

Y. L. Xu and B. A. S. Gustafson, “Comparison between multisphere light-scattering calculations: rigorous solution and discrete-dipole approximation,” Astrophys. J. 513(2), 894–909 (1999).
[CrossRef]

1994 (1)

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108(1-3), 133–143 (1994).
[CrossRef]

1993 (2)

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antenn. Propag. 41(3), 295–303 (1993).
[CrossRef]

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18(21), 1867–1869 (1993).
[CrossRef] [PubMed]

1992 (1)

1991 (2)

G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8(3), 483–489 (1991).
[CrossRef]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. Lond. A 433(1889), 599–614 (1991).
[CrossRef]

1990 (1)

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249(4970), 749–754 (1990).
[CrossRef] [PubMed]

1989 (2)

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[CrossRef]

1979 (1)

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[CrossRef]

Badenes, G.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[CrossRef]

Bain, C. D.

J. M. Taylor, L. Y. Wong, C. D. Bain, and G. D. Love, “Emergent properties in optically bound matter,” Opt. Express 16(10), 6921–6929 (2008).
[CrossRef] [PubMed]

C. D. Mellor and C. D. Bain, “Array formation in evanescent waves,” ChemPhysChem 7(2), 329–332 (2006).
[CrossRef] [PubMed]

C. D. Mellor, T. A. Fennerty, and C. D. Bain, “Polarization effects in optically bound particle arrays,” Opt. Express 14(21), 10079–10088 (2006).
[CrossRef] [PubMed]

C. D. Mellor, J. Leckner, and C. D. Bain, “Pattern formation in evanescent wave optical traps,” Proc. SPIE 5930, 59301C, 59301C-10 (2005).
[CrossRef]

Barber, P. W.

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antenn. Propag. 41(3), 295–303 (1993).
[CrossRef]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Brzobohaty, O.

V. Karásek, O. Brzobohaty, and P. Zemanek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt. 11(3), 034009 (2009).
[CrossRef]

Brzobohatý, O.

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

Burns, M. M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249(4970), 749–754 (1990).
[CrossRef] [PubMed]

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

Carruthers, A. E.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[CrossRef] [PubMed]

Chang, S.

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108(1-3), 133–143 (1994).
[CrossRef]

Chaumet, P. C.

P. C. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64(3), 035422 (2001).
[CrossRef]

Chew, H.

Chon, J. W. M.

M. Gu, J.-B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236 (2004).
[CrossRef]

Cizmar, T.

M. Šiler, T. Cizmar, M. Sery, and P. Zemanek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84(1-2), 157–165 (2006).
[CrossRef]

M. Šiler, M. Sery, T. Cizmar, and P. Zemanek, “Submicron particle localization using evanescent field,” Proc. SPIE 5930, 59300R, 59300R-9 (2005).
[CrossRef]

Cizmár, T.

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

Constable, A.

Dear, R. D.

M. D. Summers, R. D. Dear, J. M. Taylor, and G. A. D. Ritchie, “Controlled formation of optically bound matter in evanescent fields,” Proc. SPIE 7762, 776213, 776213-8 (2010).
[CrossRef]

Dholakia, K.

K. Dholakia and P. Zemánek, “Gripped by light: Optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[CrossRef]

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[CrossRef]

N. K. Metzger, K. Dholakia, and E. M. Wright, “Observation of bistability and hysteresis in optical binding of two dielectric spheres,” Phys. Rev. Lett. 96(6), 068102 (2006).
[CrossRef] [PubMed]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88(22), 221116 (2006).
[CrossRef]

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical Levitation in a Bessel Light Beam,” Appl. Phys. Lett. 85(18), 4001 (2004).
[CrossRef]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[CrossRef] [PubMed]

Fennerty, T. A.

Fournier, J.-M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249(4970), 749–754 (1990).
[CrossRef] [PubMed]

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

Gan, X.

M. Gu, J.-B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236 (2004).
[CrossRef]

Garcés-Chávez, V.

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[CrossRef]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88(22), 221116 (2006).
[CrossRef]

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical Levitation in a Bessel Light Beam,” Appl. Phys. Lett. 85(18), 4001 (2004).
[CrossRef]

Golovchenko, J. A.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249(4970), 749–754 (1990).
[CrossRef] [PubMed]

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

Gu, M.

M. Gu, J.-B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236 (2004).
[CrossRef]

Guillon, M.

M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96(14), 143902 (2006).
[CrossRef] [PubMed]

Gustafson, B. A. S.

Y. L. Xu and B. A. S. Gustafson, “Comparison between multisphere light-scattering calculations: rigorous solution and discrete-dipole approximation,” Astrophys. J. 513(2), 894–909 (1999).
[CrossRef]

Haumonte, J.-B.

M. Gu, J.-B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236 (2004).
[CrossRef]

Hill, S. C.

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antenn. Propag. 41(3), 295–303 (1993).
[CrossRef]

Jakl, P.

P. Zemanek, A. Jonas, P. Jakl, J. Jezek, M. Sery, and M. Liska, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220(4-6), 401–412 (2003).
[CrossRef]

Jezek, J.

P. Zemanek, A. Jonas, P. Jakl, J. Jezek, M. Sery, and M. Liska, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220(4-6), 401–412 (2003).
[CrossRef]

Jo, J. H.

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108(1-3), 133–143 (1994).
[CrossRef]

Jonas, A.

P. Zemanek, A. Jonas, P. Jakl, J. Jezek, M. Sery, and M. Liska, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220(4-6), 401–412 (2003).
[CrossRef]

Karásek, V.

V. Karásek, O. Brzobohaty, and P. Zemanek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt. 11(3), 034009 (2009).
[CrossRef]

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

Kawata, S.

Kerker, M.

Khaled, E. E. M.

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antenn. Propag. 41(3), 295–303 (1993).
[CrossRef]

Kim, J.

Leckner, J.

C. D. Mellor, J. Leckner, and C. D. Bain, “Pattern formation in evanescent wave optical traps,” Proc. SPIE 5930, 59301C, 59301C-10 (2005).
[CrossRef]

Lee, S. S.

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108(1-3), 133–143 (1994).
[CrossRef]

Lekner, J.

J. Lekner, “Force on a scatterer in counter-propagating coherent beams,” J. Opt. A, Pure Appl. Opt. 7(5), 238–248 (2005).
[CrossRef]

Liska, M.

P. Zemanek, A. Jonas, P. Jakl, J. Jezek, M. Sery, and M. Liska, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220(4-6), 401–412 (2003).
[CrossRef]

Love, G. D.

Mackowski, D. W.

D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 770–788 (2008).
[CrossRef]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. Lond. A 433(1889), 599–614 (1991).
[CrossRef]

McGloin, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical Levitation in a Bessel Light Beam,” Appl. Phys. Lett. 85(18), 4001 (2004).
[CrossRef]

Mellor, C. D.

C. D. Mellor and C. D. Bain, “Array formation in evanescent waves,” ChemPhysChem 7(2), 329–332 (2006).
[CrossRef] [PubMed]

C. D. Mellor, T. A. Fennerty, and C. D. Bain, “Polarization effects in optically bound particle arrays,” Opt. Express 14(21), 10079–10088 (2006).
[CrossRef] [PubMed]

C. D. Mellor, J. Leckner, and C. D. Bain, “Pattern formation in evanescent wave optical traps,” Proc. SPIE 5930, 59301C, 59301C-10 (2005).
[CrossRef]

Melville, H.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical Levitation in a Bessel Light Beam,” Appl. Phys. Lett. 85(18), 4001 (2004).
[CrossRef]

Mervis, J.

Metzger, N. K.

N. K. Metzger, K. Dholakia, and E. M. Wright, “Observation of bistability and hysteresis in optical binding of two dielectric spheres,” Phys. Rev. Lett. 96(6), 068102 (2006).
[CrossRef] [PubMed]

Micheau, Y.

M. Gu, J.-B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236 (2004).
[CrossRef]

Moine, O.

M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96(14), 143902 (2006).
[CrossRef] [PubMed]

Moore, L. J.

N. J. van Leeuwen, L. J. Moore, W. D. Partridge, R. Peverall, G. A. D. Ritchie, and M. D. Summers, “Near-field optical trapping with an actively-locked cavity,” J. Opt. 13(4), 044007 (2011).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

P. C. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64(3), 035422 (2001).
[CrossRef]

Partridge, W. D.

N. J. van Leeuwen, L. J. Moore, W. D. Partridge, R. Peverall, G. A. D. Ritchie, and M. D. Summers, “Near-field optical trapping with an actively-locked cavity,” J. Opt. 13(4), 044007 (2011).
[CrossRef]

Peverall, R.

N. J. van Leeuwen, L. J. Moore, W. D. Partridge, R. Peverall, G. A. D. Ritchie, and M. D. Summers, “Near-field optical trapping with an actively-locked cavity,” J. Opt. 13(4), 044007 (2011).
[CrossRef]

Prentiss, M.

Quidant, R.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[CrossRef]

Reece, P. J.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[CrossRef]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88(22), 221116 (2006).
[CrossRef]

Ritchie, G. A. D.

N. J. van Leeuwen, L. J. Moore, W. D. Partridge, R. Peverall, G. A. D. Ritchie, and M. D. Summers, “Near-field optical trapping with an actively-locked cavity,” J. Opt. 13(4), 044007 (2011).
[CrossRef]

M. D. Summers, R. D. Dear, J. M. Taylor, and G. A. D. Ritchie, “Controlled formation of optically bound matter in evanescent fields,” Proc. SPIE 7762, 776213, 776213-8 (2010).
[CrossRef]

Roskey, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical Levitation in a Bessel Light Beam,” Appl. Phys. Lett. 85(18), 4001 (2004).
[CrossRef]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[CrossRef]

Sery, M.

M. Šiler, T. Cizmar, M. Sery, and P. Zemanek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84(1-2), 157–165 (2006).
[CrossRef]

M. Šiler, M. Sery, T. Cizmar, and P. Zemanek, “Submicron particle localization using evanescent field,” Proc. SPIE 5930, 59300R, 59300R-9 (2005).
[CrossRef]

P. Zemanek, A. Jonas, P. Jakl, J. Jezek, M. Sery, and M. Liska, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220(4-6), 401–412 (2003).
[CrossRef]

Šiler, M.

M. Šiler, T. Cizmar, M. Sery, and P. Zemanek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84(1-2), 157–165 (2006).
[CrossRef]

M. Šiler, M. Sery, T. Cizmar, and P. Zemanek, “Submicron particle localization using evanescent field,” Proc. SPIE 5930, 59300R, 59300R-9 (2005).
[CrossRef]

Stout, B.

M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96(14), 143902 (2006).
[CrossRef] [PubMed]

Sugiura, T.

Summers, M. D.

N. J. van Leeuwen, L. J. Moore, W. D. Partridge, R. Peverall, G. A. D. Ritchie, and M. D. Summers, “Near-field optical trapping with an actively-locked cavity,” J. Opt. 13(4), 044007 (2011).
[CrossRef]

M. D. Summers, R. D. Dear, J. M. Taylor, and G. A. D. Ritchie, “Controlled formation of optically bound matter in evanescent fields,” Proc. SPIE 7762, 776213, 776213-8 (2010).
[CrossRef]

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical Levitation in a Bessel Light Beam,” Appl. Phys. Lett. 85(18), 4001 (2004).
[CrossRef]

Tatarkova, S. A.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[CrossRef] [PubMed]

Taylor, J. M.

Torner, L.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[CrossRef]

van Leeuwen, N. J.

N. J. van Leeuwen, L. J. Moore, W. D. Partridge, R. Peverall, G. A. D. Ritchie, and M. D. Summers, “Near-field optical trapping with an actively-locked cavity,” J. Opt. 13(4), 044007 (2011).
[CrossRef]

Videen, G.

Wang, D.-S.

Wong, L. Y.

Wright, E. M.

N. K. Metzger, K. Dholakia, and E. M. Wright, “Observation of bistability and hysteresis in optical binding of two dielectric spheres,” Phys. Rev. Lett. 96(6), 068102 (2006).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical Levitation in a Bessel Light Beam,” Appl. Phys. Lett. 85(18), 4001 (2004).
[CrossRef]

Xu, Y. L.

Y. L. Xu and B. A. S. Gustafson, “Comparison between multisphere light-scattering calculations: rigorous solution and discrete-dipole approximation,” Astrophys. J. 513(2), 894–909 (1999).
[CrossRef]

Zarinetchi, F.

Zemanek, P.

V. Karásek, O. Brzobohaty, and P. Zemanek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt. 11(3), 034009 (2009).
[CrossRef]

M. Šiler, T. Cizmar, M. Sery, and P. Zemanek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84(1-2), 157–165 (2006).
[CrossRef]

M. Šiler, M. Sery, T. Cizmar, and P. Zemanek, “Submicron particle localization using evanescent field,” Proc. SPIE 5930, 59300R, 59300R-9 (2005).
[CrossRef]

P. Zemanek, A. Jonas, P. Jakl, J. Jezek, M. Sery, and M. Liska, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220(4-6), 401–412 (2003).
[CrossRef]

Zemánek, P.

K. Dholakia and P. Zemánek, “Gripped by light: Optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[CrossRef]

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Šiler, T. Cizmar, M. Sery, and P. Zemanek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84(1-2), 157–165 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical Levitation in a Bessel Light Beam,” Appl. Phys. Lett. 85(18), 4001 (2004).
[CrossRef]

M. Gu, J.-B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236 (2004).
[CrossRef]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88(22), 221116 (2006).
[CrossRef]

Astrophys. J. (1)

Y. L. Xu and B. A. S. Gustafson, “Comparison between multisphere light-scattering calculations: rigorous solution and discrete-dipole approximation,” Astrophys. J. 513(2), 894–909 (1999).
[CrossRef]

ChemPhysChem (1)

C. D. Mellor and C. D. Bain, “Array formation in evanescent waves,” ChemPhysChem 7(2), 329–332 (2006).
[CrossRef] [PubMed]

IEEE Trans. Antenn. Propag. (1)

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antenn. Propag. 41(3), 295–303 (1993).
[CrossRef]

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[CrossRef]

J. Opt. (1)

N. J. van Leeuwen, L. J. Moore, W. D. Partridge, R. Peverall, G. A. D. Ritchie, and M. D. Summers, “Near-field optical trapping with an actively-locked cavity,” J. Opt. 13(4), 044007 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

V. Karásek, O. Brzobohaty, and P. Zemanek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt. 11(3), 034009 (2009).
[CrossRef]

J. Lekner, “Force on a scatterer in counter-propagating coherent beams,” J. Opt. A, Pure Appl. Opt. 7(5), 238–248 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 770–788 (2008).
[CrossRef]

Opt. Commun. (2)

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108(1-3), 133–143 (1994).
[CrossRef]

P. Zemanek, A. Jonas, P. Jakl, J. Jezek, M. Sery, and M. Liska, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220(4-6), 401–412 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

P. C. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64(3), 035422 (2001).
[CrossRef]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[CrossRef]

Phys. Rev. Lett. (5)

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[CrossRef] [PubMed]

N. K. Metzger, K. Dholakia, and E. M. Wright, “Observation of bistability and hysteresis in optical binding of two dielectric spheres,” Phys. Rev. Lett. 96(6), 068102 (2006).
[CrossRef] [PubMed]

M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96(14), 143902 (2006).
[CrossRef] [PubMed]

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A (1)

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. Lond. A 433(1889), 599–614 (1991).
[CrossRef]

Proc. SPIE (3)

C. D. Mellor, J. Leckner, and C. D. Bain, “Pattern formation in evanescent wave optical traps,” Proc. SPIE 5930, 59301C, 59301C-10 (2005).
[CrossRef]

M. Šiler, M. Sery, T. Cizmar, and P. Zemanek, “Submicron particle localization using evanescent field,” Proc. SPIE 5930, 59300R, 59300R-9 (2005).
[CrossRef]

M. D. Summers, R. D. Dear, J. M. Taylor, and G. A. D. Ritchie, “Controlled formation of optically bound matter in evanescent fields,” Proc. SPIE 7762, 776213, 776213-8 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

K. Dholakia and P. Zemánek, “Gripped by light: Optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Science (1)

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249(4970), 749–754 (1990).
[CrossRef] [PubMed]

Other (2)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions (Dover, 1972).

Supplementary Material (1)

» Media 1: AVI (3066 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The experimental setup. The apparatus is divided into 2 parts. Both the evanescent optical trap and the optical tweezers are built into a commercial microscope (Leica). A CrystaLaser (350 mW at 1064 nm, but with typically only 10 mW used in the tweezer itself) is focused by a 100× NA = 1.2 microscope objective (Leica) onto the prism surface. The resulting tweezers are controlled manually by manipulation of the steering mirror. A Laser Quantum Forte laser is coupled into a polarization maintaining optical fiber splitter, producing 100 mW at 1064 nm of light in each output arm. The two mutually coherent beams are then focused onto the prism surface at an angle greater than the critical angle of the prism. Polarization is controlled using the half-wave plates in each arm. Imaging of the trapped samples is done through the microscope objective and recorded on a CCD (Watec 902-H3).

Fig. 2
Fig. 2

The optical force between two 3.5 μm diameter spheres resting on the substrate as a function of inter-sphere spacing. Forces are shown with and without substrate reflections taken into account, and results are also shown for an alternative, approximate method of handling surface reflections that uses a large dielectric spherical surface as an approximation to the planar surface.

Fig. 3
Fig. 3

Controlled assembly of a chain of 3.5 μm silica microspheres in an evanescent field (top half of each image). Particles are moved from the pool of loose particles (bottom half of each image) using optical tweezers. The chain is observed to fill the optical potential, collapsing in the centre when a 5th particle enters the chain. Each screenshot is taken approximately 1 minute after the addition of a new particle to allow the chain equilibrium positions to be reached.

Fig. 4
Fig. 4

a (Left) Average particle positions for an example experimental run as a function of the number of particles in the chain. Positions are averaged over 30 seconds and clearly show both the “chain collapse” at 5 particles as the particles in the chain come into contact, and the decrease in interparticle separation observed towards the chain centre for a given chain length. b (Right) The probability density of interparticle separation for the case of 2 particles. The variation in length of a chain of two particles is taken over a period of one minute and shows a standard deviation of 1.2 µm.

Fig. 5
Fig. 5

A typical output plot using our evanescent wave optical binding simulation, in the absence of charge effects. In this plot, where compressive forces are shown as positive, stable chains are indicated by positive-gradient intersections of each curve with the x-axis. The full conditions on the central particles are indicated in the text. The interplay between optical forces and scattering effects acting on the spheres in small linear chains leads to complete coalescence of the chain with the addition of a 5th particle, to form a chain where all particles are in contact.

Fig. 6
Fig. 6

Plot comparing simulated equilibrium chain lengths and experimental results for charge screened samples. The experimental points are the average of several runs with the error bars representing the standard deviation observed within a single typical run. Since the experimental datapoints are averages between multiple experimental runs, the point at 5 particles includes some chains which have collapsed, and some which have not. As such, the results diverge from the simulation which predicts complete collapse at this point. An example of an experimental run which does demonstrate collapse at 5 particles has also been included for comparison. Uncertainty in the simulation parameters is estimated on the basis of a potential 5% uncertainty in the sphere radii and illuminating spot radii, 1% in the refractive index of the spheres and 0.2% in the angle of incidence of the beam.

Fig. 7
Fig. 7

Screenshots of the “Newton’s Cradle” motion from above from top left to bottom right taken from Media 1. A particle is allowed to drift in from the left hand side into a linear chain of 6 particles. The two right-most particles are ejected out of the plane (moving out of focus) due to the force due to the scattered light being guided along the chain being greater than that provided by the evanescent field. The particles then fall back into the evanescent field due to gravity and are pushed back into the chain, repeating the process on the other side. The period of oscillation is approximately 2 minutes in this example, with the video playing at 8x speed.

Fig. 8
Fig. 8

Simulation screenshots of “Newton’s Cradle” motion (side view) with the light intensity marked in yellow. The particles are ejected out of the plane in agreement with experiment.

Metrics