Abstract

We use the mode-matching technique to study parallel-plate waveguide resonant cavities that are filled with a dielectric. We apply the generalized scattering matrix theory to calculate the power transmission through the waveguide-cavities. We compare the analytical results to experimental data to confirm the validity of this approach.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
    [CrossRef] [PubMed]
  2. T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, “Photonic crystals for fluid sensing in the subterahertz range,” Appl. Phys. Lett.89(17), 173508 (2006).
    [CrossRef]
  3. M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
    [CrossRef]
  4. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
    [CrossRef]
  5. B. You, J. Y. Lu, J. H. Liou, C. P. Yu, H. Z. Chen, T. A. Liu, and J. L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express18(18), 19353–19360 (2010).
    [CrossRef] [PubMed]
  6. S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(theylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express2(1), 012301 (2009).
    [CrossRef]
  7. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
    [CrossRef]
  8. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
    [CrossRef] [PubMed]
  9. C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
    [CrossRef]
  10. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
    [CrossRef]
  11. V. Astley, K. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett.100(23), 231108 (2012).
    [CrossRef]
  12. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
    [CrossRef] [PubMed]
  13. V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett.36(8), 1452–1454 (2011).
    [CrossRef] [PubMed]
  14. A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett.90(9), 091105 (2007).
    [CrossRef]
  15. A. Bingham, “Propagation through terahertz waveguides with photonic crystal boundaries,” Ph.D. Thesis, Oklahoma State University: Stillwater (2007).
  16. P. P. Borsboom and H. J. Frankena, “Field analysis of two-dimensional integrated optical gratings,” J. Opt. Soc. Am. B12(5), 1134–1141 (1995).
    [CrossRef]
  17. T. Thumvongskul and T. Shiozawa, “Reflection characteristics of a metallic waveguide grating with rectangular grooves as a frequency-selective reflector,” Microw. Opt. Technol. Lett.32(6), 414–418 (2002).
    [CrossRef]
  18. T. Itoh, ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structures (Wiley, 1989).
  19. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B26(9), A6–A13 (2009).
    [CrossRef]
  20. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  21. R. Mendis, “Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides,” Opt. Lett.31(17), 2643–2645 (2006).
    [CrossRef] [PubMed]
  22. J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Millim. Terahertz Waves31(9), 1015–1021 (2010).
    [CrossRef]

2012 (1)

V. Astley, K. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett.100(23), 231108 (2012).
[CrossRef]

2011 (1)

2010 (2)

J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Millim. Terahertz Waves31(9), 1015–1021 (2010).
[CrossRef]

B. You, J. Y. Lu, J. H. Liou, C. P. Yu, H. Z. Chen, T. A. Liu, and J. L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express18(18), 19353–19360 (2010).
[CrossRef] [PubMed]

2009 (4)

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(theylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express2(1), 012301 (2009).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B26(9), A6–A13 (2009).
[CrossRef]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (3)

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
[CrossRef]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett.90(9), 091105 (2007).
[CrossRef]

2006 (2)

R. Mendis, “Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides,” Opt. Lett.31(17), 2643–2645 (2006).
[CrossRef] [PubMed]

T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, “Photonic crystals for fluid sensing in the subterahertz range,” Appl. Phys. Lett.89(17), 173508 (2006).
[CrossRef]

2005 (2)

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

2003 (1)

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

2002 (1)

T. Thumvongskul and T. Shiozawa, “Reflection characteristics of a metallic waveguide grating with rectangular grooves as a frequency-selective reflector,” Microw. Opt. Technol. Lett.32(6), 414–418 (2002).
[CrossRef]

1995 (1)

P. P. Borsboom and H. J. Frankena, “Field analysis of two-dimensional integrated optical gratings,” J. Opt. Soc. Am. B12(5), 1134–1141 (1995).
[CrossRef]

Astley, V.

V. Astley, K. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett.100(23), 231108 (2012).
[CrossRef]

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett.36(8), 1452–1454 (2011).
[CrossRef] [PubMed]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Beigang, R.

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
[CrossRef]

Bingham, A. L.

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett.90(9), 091105 (2007).
[CrossRef]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
[CrossRef]

Borsboom, P. P.

P. P. Borsboom and H. J. Frankena, “Field analysis of two-dimensional integrated optical gratings,” J. Opt. Soc. Am. B12(5), 1134–1141 (1995).
[CrossRef]

Brener, I.

Chen, H. Z.

Citrin, D. S.

T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, “Photonic crystals for fluid sensing in the subterahertz range,” Appl. Phys. Lett.89(17), 173508 (2006).
[CrossRef]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
[CrossRef]

Fan, X.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Frankena, H. J.

P. P. Borsboom and H. J. Frankena, “Field analysis of two-dimensional integrated optical gratings,” J. Opt. Soc. Am. B12(5), 1134–1141 (1995).
[CrossRef]

Grischkowsky, D.

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett.90(9), 091105 (2007).
[CrossRef]

Han, J.

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Hasek, T.

T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, “Photonic crystals for fluid sensing in the subterahertz range,” Appl. Phys. Lett.89(17), 173508 (2006).
[CrossRef]

Jones, J.

V. Astley, K. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett.100(23), 231108 (2012).
[CrossRef]

Kato, E.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(theylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express2(1), 012301 (2009).
[CrossRef]

Kawase, K.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(theylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express2(1), 012301 (2009).
[CrossRef]

Koch, M.

T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, “Photonic crystals for fluid sensing in the subterahertz range,” Appl. Phys. Lett.89(17), 173508 (2006).
[CrossRef]

Kurt, H.

T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, “Photonic crystals for fluid sensing in the subterahertz range,” Appl. Phys. Lett.89(17), 173508 (2006).
[CrossRef]

Laib, J. P.

J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Millim. Terahertz Waves31(9), 1015–1021 (2010).
[CrossRef]

Liou, J. H.

Liu, J.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Liu, T. A.

Loncar, M.

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

Lu, J. Y.

McCracken, B.

Mendis, R.

Mittleman, D. M.

V. Astley, K. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett.100(23), 231108 (2012).
[CrossRef]

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett.36(8), 1452–1454 (2011).
[CrossRef] [PubMed]

J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Millim. Terahertz Waves31(9), 1015–1021 (2010).
[CrossRef]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B26(9), A6–A13 (2009).
[CrossRef]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
[CrossRef] [PubMed]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Nakagomi, Y.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(theylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express2(1), 012301 (2009).
[CrossRef]

Nerkararyan, Kh.

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
[CrossRef]

O’Hara, J. F.

Ogawa, Y.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(theylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express2(1), 012301 (2009).
[CrossRef]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Peng, J. L.

Qiu, Y.

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

Rau, C.

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
[CrossRef]

Reichel, K.

V. Astley, K. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett.100(23), 231108 (2012).
[CrossRef]

Scherer, A.

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

Shiozawa, T.

T. Thumvongskul and T. Shiozawa, “Reflection characteristics of a metallic waveguide grating with rectangular grooves as a frequency-selective reflector,” Microw. Opt. Technol. Lett.32(6), 414–418 (2002).
[CrossRef]

Singh, R.

Smirnova, E.

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Suizu, K.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(theylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express2(1), 012301 (2009).
[CrossRef]

Suter, J. D.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

Taylor, A. J.

Thumvongskul, T.

T. Thumvongskul and T. Shiozawa, “Reflection characteristics of a metallic waveguide grating with rectangular grooves as a frequency-selective reflector,” Microw. Opt. Technol. Lett.32(6), 414–418 (2002).
[CrossRef]

Torosyan, G.

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
[CrossRef]

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

White, I. M.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

Yoshida, S.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(theylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express2(1), 012301 (2009).
[CrossRef]

You, B.

Yu, C. P.

Zhang, W.

Zhu, H.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

Zourob, M.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

Anal. Chem. (1)

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(theylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express2(1), 012301 (2009).
[CrossRef]

Appl. Phys. Lett. (8)

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
[CrossRef]

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett.90(9), 091105 (2007).
[CrossRef]

T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, “Photonic crystals for fluid sensing in the subterahertz range,” Appl. Phys. Lett.89(17), 173508 (2006).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

V. Astley, K. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett.100(23), 231108 (2012).
[CrossRef]

J. Infrared Millim. Terahertz Waves (1)

J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Millim. Terahertz Waves31(9), 1015–1021 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

Microw. Opt. Technol. Lett. (1)

T. Thumvongskul and T. Shiozawa, “Reflection characteristics of a metallic waveguide grating with rectangular grooves as a frequency-selective reflector,” Microw. Opt. Technol. Lett.32(6), 414–418 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (3)

A. Bingham, “Propagation through terahertz waveguides with photonic crystal boundaries,” Ph.D. Thesis, Oklahoma State University: Stillwater (2007).

T. Itoh, ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structures (Wiley, 1989).

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of the grooved PPWG showing geometric parameters and the polarization and direction of the incident electric field. The dotted line indicates the (level of the) dielectric filling in the groove.

Fig. 2
Fig. 2

Electric field patterns for the modified TE1 to TE4 modes of the partially dielectric-filled PPWG, illustrating the distortion of the mode due to the partial dielectric filling. The dielectric in this example is a slab of liquid (tetradecane) of height 412 μm, in a waveguide of total spacing b = 1.409 mm.

Fig. 3
Fig. 3

Plot of the calculated shift in the resonant frequency for a groove of dimensions 457 μm by 406 μm when filled exactly to the top by dielectrics of varying refractive indices.

Fig. 4
Fig. 4

Vertical dashed lines show a full groove filling. (a) Plot of the calculated shift in resonant frequency versus the height of the tetradecane filling in a 457 μm by 406 μm groove. A dashed line marks the height of a perfect fill, 406 μm. (b) Plots of the observed shift in the resonant frequency for a waveguide of the same geometry, as a function of the volume of liquid injected into the cavity, obtained experimentally.

Fig. 5
Fig. 5

The difference between the resonant frequency for the empty waveguide with the 457 μm by 406 μm groove, and the waveguide with the same groove filled with tetradecane, as a function of the spacing between the waveguide plates.

Fig. 6
Fig. 6

Plot of the resonant shift (relative to the empty waveguide) obtained experimentally for a 711 μm by 406 μm groove filled to a height of 350 μm with a range of alkanes (red circles) and a 457 μm by 406 μm groove filled to a height of 420 μm with the same materials (blue squares). The lines are the predicted results from the mode-matching analysis.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E x d = -j β Z A d ε d sin( ( β yd (b-y) ) e -j β z z
E x 0 = -j β z A 0 ε 0 sin( β y0 y) e -j β Z Z

Metrics