Abstract

In this paper, we experimentally demonstrated the fabrication and hydrostatic pressure characteristics of a twin-core photonic crystal fiber (TC-PCF). Mode couplings in the TC-PCF for x- and y-polarizations were analyzed simultaneously using group effective index of guiding modes. The output spectrum of the TC-PCF was modulated due to the combined couplings of the two polarizations. To the best of our knowledge, it is the first time to measure hydrostatic pressure through the dual-polarization mode coupling in a TC-PCF. The measured sensitivity of the pressure sensor was −21pm/MPa. The length of the TC-PCF used for pressure measurement was 20cm, which is much shorter than pressure sensor based on PM-PCF, and does not require any external polarizing components, meaning that it is a good candidate for compact pressure sensor.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  2. P. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006).
    [CrossRef]
  3. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  4. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett.22(13), 961–963 (1997).
    [CrossRef] [PubMed]
  5. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express11(8), 843–852 (2003).
    [CrossRef] [PubMed]
  6. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000).
    [CrossRef] [PubMed]
  7. J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Express15(23), 15365–15376 (2007).
    [CrossRef] [PubMed]
  8. M. L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express14(10), 4445–4451 (2006).
    [CrossRef] [PubMed]
  9. B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
    [CrossRef]
  10. Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express15(8), 4795–4803 (2007).
    [CrossRef] [PubMed]
  11. W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J.10(7), 1192–1199 (2010).
    [CrossRef]
  12. W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett.84(10), 1689–1691 (2004).
    [CrossRef]
  13. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express11(24), 3188–3195 (2003).
    [CrossRef] [PubMed]
  14. J. R. Salgueiro and Y. S. Kivshar, “Nonlinear dual-core photonic crystal fiber couplers,” Opt. Lett.30(14), 1858–1860 (2005).
    [CrossRef] [PubMed]
  15. B. Kim, T.-H. Kim, L. Cui, and Y. Chung, “Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications,” Opt. Express17(18), 15502–15507 (2009).
    [CrossRef] [PubMed]
  16. M. K. Szczurowski, T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and D. J. Webb, “Measurements of polarimetric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber,” Opt. Express18(12), 12076–12087 (2010).
    [CrossRef] [PubMed]
  17. M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
    [CrossRef]
  18. C. Wu, B.-O. Guan, Z. Wang, and X. Feng, “Characterization of Pressure Response of Bragg Gratings in Grapefruit Microstructured Fibers,” J. Lightwave Technol.28(9), 1392–1397 (2010).
    [CrossRef]
  19. C. Wu, H. Y. Fu, K. K. Qureshi, B.-O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett.36(3), 412–414 (2011).
    [CrossRef] [PubMed]
  20. H. Y. Fu, C. Wu, M. L. V. Tse, L. Zhang, K. D. Cheng, H. Y. Tam, B. Guan, and C. Lu, “High pressure sensor based on photonic crystal fiber for downhole application,” Appl. Opt.49, 2639–2643 (2010).
  21. T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett.36(18), 3542–3544 (2011).
    [CrossRef] [PubMed]
  22. D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett.23(24), 1851–1853 (2011).
    [CrossRef]
  23. M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,” Appl. Opt.43(24), 4739–4744 (2004).
    [CrossRef] [PubMed]
  24. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A11(3), 963–983 (1994).
    [CrossRef]
  25. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing Holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
    [CrossRef]

2011

2010

2009

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing Holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

B. Kim, T.-H. Kim, L. Cui, and Y. Chung, “Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications,” Opt. Express17(18), 15502–15507 (2009).
[CrossRef] [PubMed]

2007

2006

2005

2004

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,” Appl. Opt.43(24), 4739–4744 (2004).
[CrossRef] [PubMed]

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett.84(10), 1689–1691 (2004).
[CrossRef]

2003

2000

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000).
[CrossRef] [PubMed]

B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

1997

1996

1994

1993

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
[CrossRef]

Argyros, A.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett.84(10), 1689–1691 (2004).
[CrossRef]

Arriaga, J.

Atkin, D. M.

Bang, O.

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J.10(7), 1192–1199 (2010).
[CrossRef]

Birks, T. A.

Broderick, N. G.

Canning, J.

Chen, D.

D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett.23(24), 1851–1853 (2011).
[CrossRef]

Chen, K. P.

Chen, L.

D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett.23(24), 1851–1853 (2011).
[CrossRef]

Chen, R.

Chen, T.

Cheng, K. D.

Chow, Y.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
[CrossRef]

Chung, Y.

Cook, K.

Cui, L.

Dakin, J. P.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
[CrossRef]

Dong, L.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing Holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Du, J.

Feng, X.

Fu, H. Y.

Fu, L. B.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing Holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Greenaway, A. H.

B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Guan, B.

Guan, B.-O.

Hasegawa, T.

Hayes, J. R.

Horak, P.

Hu, G.

D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett.23(24), 1851–1853 (2011).
[CrossRef]

Huang, W.-P.

Issa, N. A.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett.84(10), 1689–1691 (2004).
[CrossRef]

Jewart, C.

Kim, B.

Kim, T.-H.

Kivshar, Y. S.

Knight, J. C.

Koshiba, M.

Liu, Y.

Lu, C.

H. Y. Fu, C. Wu, M. L. V. Tse, L. Zhang, K. D. Cheng, H. Y. Tam, B. Guan, and C. Lu, “High pressure sensor based on photonic crystal fiber for downhole application,” Appl. Opt.49, 2639–2643 (2010).

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing Holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Mangan, B. J.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000).
[CrossRef] [PubMed]

B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Martynkien, T.

Ortigosa-Blanch, A.

Padden, W. E. P.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett.84(10), 1689–1691 (2004).
[CrossRef]

Poletti, F.

Price, J. H.

Qureshi, K. K.

Reekie, L.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
[CrossRef]

Richardson, D. J.

Russell, P.

Russell, P. S.

Russell, P. S. J.

B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Saitoh, K.

Salgueiro, J. R.

Sasaoka, E.

Sato, Y.

Skryabin, D. V.

Statkiewicz-Barabach, G.

Szczurowski, M. K.

Szpulak, M.

Tam, H. Y.

Taru, T.

Thomas, B. K.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing Holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Town, G. E.

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J.10(7), 1192–1199 (2010).
[CrossRef]

Tse, M. L. V.

Urbanczyk, W.

van Eijkelenborg, M. A.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett.84(10), 1689–1691 (2004).
[CrossRef]

Wadsworth, W. J.

Wai, P. K. A.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing Holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Wang, Z.

Webb, D. J.

Wu, C.

Xu, M.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
[CrossRef]

Yuan, W.

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J.10(7), 1192–1199 (2010).
[CrossRef]

Zhang, B.

Zhang, L.

Appl. Opt.

Appl. Phys. Lett.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett.84(10), 1689–1691 (2004).
[CrossRef]

Electron. Lett.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
[CrossRef]

B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett.23(24), 1851–1853 (2011).
[CrossRef]

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing Holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

IEEE Sens. J.

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J.10(7), 1192–1199 (2010).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Express

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express11(8), 843–852 (2003).
[CrossRef] [PubMed]

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express15(8), 4795–4803 (2007).
[CrossRef] [PubMed]

J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Express15(23), 15365–15376 (2007).
[CrossRef] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express14(10), 4445–4451 (2006).
[CrossRef] [PubMed]

B. Kim, T.-H. Kim, L. Cui, and Y. Chung, “Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications,” Opt. Express17(18), 15502–15507 (2009).
[CrossRef] [PubMed]

M. K. Szczurowski, T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and D. J. Webb, “Measurements of polarimetric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber,” Opt. Express18(12), 12076–12087 (2010).
[CrossRef] [PubMed]

K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express11(24), 3188–3195 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Science

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The microscope photo of the cross section of the cane and 
the SEM photos of the TC-PCF: (b) the whole fiber; (c) holes section

Fig. 2
Fig. 2

The phase effective index of refraction (a) and the group effective index of refraction (b) as the function of wavelength. The insets of (a) are the electric field profiles of x-polarized even mode, x-polarized odd mode, y-polarized even mode, and y-polarized odd mode.

Fig. 3
Fig. 3

The experimental spectrum of 110-cm-long TC-PCF at the output measured using OSA with a resolution of 0.02nm. The upper left inset is the setup utilized.

Fig. 4
Fig. 4

Schematic diagram of the setup for hydrostatic pressure measurement, the left inset illustrates the transmission spectrum of 20-cm-long TC-PCF with the fringe spacing of 3.688nm

Fig. 5
Fig. 5

(a) Transmission spectrum shift of the sensor with the hydrostatic pressure changing from 0MPa to 45MPa. (b) Wavelength shift at one minima as functions of hydrostatic pressure applied, the top-right inset shows the shift of spectrum around the minima

Fig. 6
Fig. 6

The simulation and experimental wavelength shift as functions of hydrostatic pressure.The simulation spectrum shift at one minima is shown in the left-bottom inset

Fig. 7
Fig. 7

The temperature response of the TC-PCF sensor, the spectra shift at different temperature and the setup used are showing in the insets.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n g = n p λ d n p dλ .
|(λ)= sin 2 ( π 2 L c L)= sin 2 ( π λ Δ n x,group L).
I= I 1 + I 2 .
|(λ)=1cos[ π λ (Δ n x,group +Δ n y,group )L].cos[ π λ (Δ n x,group Δ n y,group )L].
Δλ= 2 λ 2 (Δ n x,group +Δ n y,group )L .
n x = n 0 C 1 σ x C 2 ( σ y + σ z ) n y = n 0 C 1 σ y C 2 ( σ x + σ z ),

Metrics