Abstract

A tapered fiber localized surface plasmon resonance (LSPR) sensor is demonstrated for refractive index sensing and label-free biochemical detection. The sensing strategy relies on the interrogation of the transmission intensity change due to the evanescent field absorption of immobilized gold nanoparticles on the tapered fiber surface. The refractive index resolution based on the interrogation of transmission intensity change is calculated to be 3.2×10−5 RIU. The feasibility of DNP-functionalized tapered fiber LSPR sensor in monitoring anti-DNP antibody with different concentrations spiked in buffer is examined. Results suggest that the compact sensor can perform qualitative and quantitative biochemical detection in real-time and thus has potential to be used in biomolecular sensing applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
    [CrossRef] [PubMed]
  2. D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
    [CrossRef]
  3. S. Lacroix, F. Gonthier, and J. Bures, “All-fiber wavelength filter from successive biconical tapers,” Opt. Lett. 11(10), 671–673 (1986).
    [CrossRef] [PubMed]
  4. J. Zhang, P. Shum, X. P. Cheng, N. Q. Ngo, and S. Y. Li, “Analysis of linearly tapered fiber Bragg grating for dispersion slope compensation,” IEEE Photon. Technol. Lett. 15(10), 1389–1391 (2003).
    [CrossRef]
  5. Z.-Z. Feng, Y.-H. Hsieh, and N.-K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett. 23(7), 438–440 (2011).
    [CrossRef]
  6. J. Villatoro, D. Monzón-Hernández, and D. Luna-Moreno, “In-line optical fiber sensors based on cladded multimode tapered fibers,” Appl. Opt. 43(32), 5933–5938 (2004).
    [CrossRef] [PubMed]
  7. Y.-P. Wang, L. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31(23), 3414–3416 (2006).
    [CrossRef] [PubMed]
  8. S. Maguis, G. Laffont, P. Ferdinand, B. Carbonnier, K. Kham, T. Mekhalif, and M.-C. Millot, “Biofunctionalized tilted fiber Bragg gratings for label-free immunosensing,” Opt. Express 16(23), 19049–19062 (2008).
    [CrossRef] [PubMed]
  9. S.-M. Tseng and C.-L. Chen, “Side-polished fibers,” Appl. Opt. 31(18), 3438–3447 (1992).
    [CrossRef] [PubMed]
  10. A. Abdelghani and N. Jaffrezic-Renault, “SPR fibre sensor sensitised by fluorosiloxane polymers,” Sens. Actuators B 74(1-3), 117–123 (2001).
    [CrossRef]
  11. Y.-H. Tai and P.-K. Wei, “Sensitive liquid refractive index sensors using tapered optical fiber tips,” Opt. Lett. 35(7), 944–946 (2010).
    [CrossRef] [PubMed]
  12. P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [CrossRef]
  13. C. D. Singh, Y. Shibata, and M. Ogita, “A theoretical study of tapered, porous clad optical fibers for detection of gases,” Sens. Actuators B 92(1–2), 44–48 (2003).
    [CrossRef]
  14. C. Bariáin, I. R. Matias, I. Romeo, J. Garrido, and M. Laguna, “Detection of volatile organic compound vapors by using a vapochromic material on a tapered optical fiber,” Appl. Phys. Lett. 77(15), 2274–2276 (2000).
    [CrossRef]
  15. A. Leung, P. M. Shankar, and R. Mutharasan, “Model protein detection using antibody-immobilized tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm,” Sens. Actuators B 129(2), 716–725 (2008).
    [CrossRef]
  16. M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
    [CrossRef] [PubMed]
  17. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125(2), 688–703 (2007).
    [CrossRef]
  18. H. S. MacKenzie and F. P. Payne, “Evanescent field amplification in a tapered single-mode optical fiber,” Electron. Lett. 26(2), 130–132 (1990).
    [CrossRef]
  19. A. G. Mignani, R. Falciai, and L. Ciaccheri, “Evanescent wave absorption spectroscopy by means of bi-tapered multimode optical fibers,” Appl. Spectrosc. 52(4), 546–551 (1998).
    [CrossRef]
  20. M. Sheeba, M. Rajesh, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Fibre optic sensor for the detection of adulterant traces in coconut oil,” Meas. Sci. Technol. 16(11), 2247–2250 (2005).
    [CrossRef]
  21. Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron. 11(1–2), 137–148 (1996).
    [CrossRef]
  22. A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun.245(1-6), 159–169 (2005).
  23. G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor: combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8(5), 249–256 (1993).
    [CrossRef]
  24. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [CrossRef] [PubMed]
  25. C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
    [CrossRef] [PubMed]
  26. T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, and E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen-antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
    [CrossRef]
  27. I. Ruach-Nir, T. A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich, and I. Rubinstein, “Silica-stabilized gold island films for transmission localized surface plasmon sensing,” J. Am. Chem. Soc. 129(1), 84–92 (2007).
    [CrossRef] [PubMed]
  28. Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors,” Sensors (Basel) 12(3), 2729–2741 (2012).
    [CrossRef] [PubMed]
  29. S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt. 48(19), 3796–3802 (2009).
    [CrossRef] [PubMed]
  30. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [CrossRef]
  31. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  32. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1–2), 3–15 (1999).
    [CrossRef]
  33. S.-F. Cheng and L.-K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
    [CrossRef] [PubMed]
  34. R. Blonder, E. Katz, Y. Cohen, N. Itzhak, A. Riklin, and I. Willner, “Application of redox enzymes for probing the antigen-antibody association at monolayer interfaces: development of amperometric immunosensor electrodes,” Anal. Chem. 68(18), 3151–3157 (1996).
    [CrossRef] [PubMed]

2012 (1)

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors,” Sensors (Basel) 12(3), 2729–2741 (2012).
[CrossRef] [PubMed]

2011 (2)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Z.-Z. Feng, Y.-H. Hsieh, and N.-K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett. 23(7), 438–440 (2011).
[CrossRef]

2010 (2)

Y.-H. Tai and P.-K. Wei, “Sensitive liquid refractive index sensors using tapered optical fiber tips,” Opt. Lett. 35(7), 944–946 (2010).
[CrossRef] [PubMed]

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[CrossRef] [PubMed]

2009 (2)

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt. 48(19), 3796–3802 (2009).
[CrossRef] [PubMed]

2008 (4)

C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[CrossRef] [PubMed]

A. Leung, P. M. Shankar, and R. Mutharasan, “Model protein detection using antibody-immobilized tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm,” Sens. Actuators B 129(2), 716–725 (2008).
[CrossRef]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

S. Maguis, G. Laffont, P. Ferdinand, B. Carbonnier, K. Kham, T. Mekhalif, and M.-C. Millot, “Biofunctionalized tilted fiber Bragg gratings for label-free immunosensing,” Opt. Express 16(23), 19049–19062 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125(2), 688–703 (2007).
[CrossRef]

I. Ruach-Nir, T. A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich, and I. Rubinstein, “Silica-stabilized gold island films for transmission localized surface plasmon sensing,” J. Am. Chem. Soc. 129(1), 84–92 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (3)

M. Sheeba, M. Rajesh, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Fibre optic sensor for the detection of adulterant traces in coconut oil,” Meas. Sci. Technol. 16(11), 2247–2250 (2005).
[CrossRef]

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, and E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen-antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

2004 (1)

2003 (4)

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[CrossRef]

J. Zhang, P. Shum, X. P. Cheng, N. Q. Ngo, and S. Y. Li, “Analysis of linearly tapered fiber Bragg grating for dispersion slope compensation,” IEEE Photon. Technol. Lett. 15(10), 1389–1391 (2003).
[CrossRef]

C. D. Singh, Y. Shibata, and M. Ogita, “A theoretical study of tapered, porous clad optical fibers for detection of gases,” Sens. Actuators B 92(1–2), 44–48 (2003).
[CrossRef]

S.-F. Cheng and L.-K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
[CrossRef] [PubMed]

2001 (1)

A. Abdelghani and N. Jaffrezic-Renault, “SPR fibre sensor sensitised by fluorosiloxane polymers,” Sens. Actuators B 74(1-3), 117–123 (2001).
[CrossRef]

2000 (2)

C. Bariáin, I. R. Matias, I. Romeo, J. Garrido, and M. Laguna, “Detection of volatile organic compound vapors by using a vapochromic material on a tapered optical fiber,” Appl. Phys. Lett. 77(15), 2274–2276 (2000).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
[CrossRef] [PubMed]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1–2), 3–15 (1999).
[CrossRef]

1998 (1)

1996 (2)

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron. 11(1–2), 137–148 (1996).
[CrossRef]

R. Blonder, E. Katz, Y. Cohen, N. Itzhak, A. Riklin, and I. Willner, “Application of redox enzymes for probing the antigen-antibody association at monolayer interfaces: development of amperometric immunosensor electrodes,” Anal. Chem. 68(18), 3151–3157 (1996).
[CrossRef] [PubMed]

1993 (1)

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor: combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8(5), 249–256 (1993).
[CrossRef]

1992 (1)

1990 (1)

H. S. MacKenzie and F. P. Payne, “Evanescent field amplification in a tapered single-mode optical fiber,” Electron. Lett. 26(2), 130–132 (1990).
[CrossRef]

1986 (1)

Abdelghani, A.

A. Abdelghani and N. Jaffrezic-Renault, “SPR fibre sensor sensitised by fluorosiloxane polymers,” Sens. Actuators B 74(1-3), 117–123 (2001).
[CrossRef]

Akimov, D. A.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[CrossRef]

Alfimov, M. V.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[CrossRef]

Anderson, G. P.

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor: combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8(5), 249–256 (1993).
[CrossRef]

Azar, M. K.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[CrossRef] [PubMed]

Bariáin, C.

C. Bariáin, I. R. Matias, I. Romeo, J. Garrido, and M. Laguna, “Detection of volatile organic compound vapors by using a vapochromic material on a tapered optical fiber,” Appl. Phys. Lett. 77(15), 2274–2276 (2000).
[CrossRef]

Barkay, Z.

I. Ruach-Nir, T. A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich, and I. Rubinstein, “Silica-stabilized gold island films for transmission localized surface plasmon sensing,” J. Am. Chem. Soc. 129(1), 84–92 (2007).
[CrossRef] [PubMed]

Bendikov, T. A.

I. Ruach-Nir, T. A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich, and I. Rubinstein, “Silica-stabilized gold island films for transmission localized surface plasmon sensing,” J. Am. Chem. Soc. 129(1), 84–92 (2007).
[CrossRef] [PubMed]

Birks, T. A.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
[CrossRef] [PubMed]

Blonder, R.

R. Blonder, E. Katz, Y. Cohen, N. Itzhak, A. Riklin, and I. Willner, “Application of redox enzymes for probing the antigen-antibody association at monolayer interfaces: development of amperometric immunosensor electrodes,” Anal. Chem. 68(18), 3151–3157 (1996).
[CrossRef] [PubMed]

Bures, J.

Carbonnier, B.

Chau, L.-K.

S.-F. Cheng and L.-K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
[CrossRef] [PubMed]

Chen, C.-L.

Chen, N.-K.

Z.-Z. Feng, Y.-H. Hsieh, and N.-K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett. 23(7), 438–440 (2011).
[CrossRef]

Chen, Q. Y.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Cheng, S.-F.

S.-F. Cheng and L.-K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
[CrossRef] [PubMed]

Cheng, X. P.

J. Zhang, P. Shum, X. P. Cheng, N. Q. Ngo, and S. Y. Li, “Analysis of linearly tapered fiber Bragg grating for dispersion slope compensation,” IEEE Photon. Technol. Lett. 15(10), 1389–1391 (2003).
[CrossRef]

Chu, S. W.

Chui, H. C.

Ciaccheri, L.

Cohen, Y.

R. Blonder, E. Katz, Y. Cohen, N. Itzhak, A. Riklin, and I. Willner, “Application of redox enzymes for probing the antigen-antibody association at monolayer interfaces: development of amperometric immunosensor electrodes,” Anal. Chem. 68(18), 3151–3157 (1996).
[CrossRef] [PubMed]

Doron-Mor, I.

I. Ruach-Nir, T. A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich, and I. Rubinstein, “Silica-stabilized gold island films for transmission localized surface plasmon sensing,” J. Am. Chem. Soc. 129(1), 84–92 (2007).
[CrossRef] [PubMed]

Endo, T.

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, and E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen-antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Falciai, R.

Feng, Z.-Z.

Z.-Z. Feng, Y.-H. Hsieh, and N.-K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett. 23(7), 438–440 (2011).
[CrossRef]

Ferdinand, P.

Garrido, J.

C. Bariáin, I. R. Matias, I. Romeo, J. Garrido, and M. Laguna, “Detection of volatile organic compound vapors by using a vapochromic material on a tapered optical fiber,” Appl. Phys. Lett. 77(15), 2274–2276 (2000).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1–2), 3–15 (1999).
[CrossRef]

Ghezelaiagh, M. H.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[CrossRef] [PubMed]

Golden, J. P.

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor: combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8(5), 249–256 (1993).
[CrossRef]

Gonthier, F.

Gupta, B. D.

S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt. 48(19), 3796–3802 (2009).
[CrossRef] [PubMed]

A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun.245(1-6), 159–169 (2005).

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Hale, Z. M.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron. 11(1–2), 137–148 (1996).
[CrossRef]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1–2), 3–15 (1999).
[CrossRef]

Hosseini, S. M.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[CrossRef] [PubMed]

Hsieh, Y.-H.

Z.-Z. Feng, Y.-H. Hsieh, and N.-K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett. 23(7), 438–440 (2011).
[CrossRef]

Huang, C. H.

Huang, Y. Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Itzhak, N.

R. Blonder, E. Katz, Y. Cohen, N. Itzhak, A. Riklin, and I. Willner, “Application of redox enzymes for probing the antigen-antibody association at monolayer interfaces: development of amperometric immunosensor electrodes,” Anal. Chem. 68(18), 3151–3157 (1996).
[CrossRef] [PubMed]

Ivanov, A. A.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[CrossRef]

Jaffrezic-Renault, N.

A. Abdelghani and N. Jaffrezic-Renault, “SPR fibre sensor sensitised by fluorosiloxane polymers,” Sens. Actuators B 74(1-3), 117–123 (2001).
[CrossRef]

Jin, W.

Katz, E.

R. Blonder, E. Katz, Y. Cohen, N. Itzhak, A. Riklin, and I. Willner, “Application of redox enzymes for probing the antigen-antibody association at monolayer interfaces: development of amperometric immunosensor electrodes,” Anal. Chem. 68(18), 3151–3157 (1996).
[CrossRef] [PubMed]

Kazemi, A.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[CrossRef] [PubMed]

Kham, K.

Kolevatova, O. A.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[CrossRef]

Lacroix, S.

Laffont, G.

Laguna, M.

C. Bariáin, I. R. Matias, I. Romeo, J. Garrido, and M. Laguna, “Detection of volatile organic compound vapors by using a vapochromic material on a tapered optical fiber,” Appl. Phys. Lett. 77(15), 2274–2276 (2000).
[CrossRef]

Lan, Y. C.

Latifi, H.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[CrossRef] [PubMed]

Lee, J.

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors,” Sensors (Basel) 12(3), 2729–2741 (2012).
[CrossRef] [PubMed]

Lee, R. K.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “Model protein detection using antibody-immobilized tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm,” Sens. Actuators B 129(2), 716–725 (2008).
[CrossRef]

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125(2), 688–703 (2007).
[CrossRef]

Levine, M. M.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron. 11(1–2), 137–148 (1996).
[CrossRef]

Li, S. Y.

J. Zhang, P. Shum, X. P. Cheng, N. Q. Ngo, and S. Y. Li, “Analysis of linearly tapered fiber Bragg grating for dispersion slope compensation,” IEEE Photon. Technol. Lett. 15(10), 1389–1391 (2003).
[CrossRef]

Liang, W.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Ligler, F. S.

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor: combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8(5), 249–256 (1993).
[CrossRef]

Lin, C. H.

Lin, H. Y.

Lowe, C. R.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron. 11(1–2), 137–148 (1996).
[CrossRef]

Lu, P.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Luna-Moreno, D.

MacKenzie, H. S.

H. S. MacKenzie and F. P. Payne, “Evanescent field amplification in a tapered single-mode optical fiber,” Electron. Lett. 26(2), 130–132 (1990).
[CrossRef]

Maguis, S.

Marks, R. S.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron. 11(1–2), 137–148 (1996).
[CrossRef]

Matias, I. R.

C. Bariáin, I. R. Matias, I. Romeo, J. Garrido, and M. Laguna, “Detection of volatile organic compound vapors by using a vapochromic material on a tapered optical fiber,” Appl. Phys. Lett. 77(15), 2274–2276 (2000).
[CrossRef]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Mekhalif, T.

Men, L. Q.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Mignani, A. G.

Millot, M.-C.

Monzón-Hernández, D.

Morita, Y.

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, and E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen-antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “Model protein detection using antibody-immobilized tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm,” Sens. Actuators B 129(2), 716–725 (2008).
[CrossRef]

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125(2), 688–703 (2007).
[CrossRef]

Nagatani, N.

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, and E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen-antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Nampoori, V. P. N.

M. Sheeba, M. Rajesh, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Fibre optic sensor for the detection of adulterant traces in coconut oil,” Meas. Sci. Technol. 16(11), 2247–2250 (2005).
[CrossRef]

Naumov, A. N.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[CrossRef]

Ngo, N. Q.

J. Zhang, P. Shum, X. P. Cheng, N. Q. Ngo, and S. Y. Li, “Analysis of linearly tapered fiber Bragg grating for dispersion slope compensation,” IEEE Photon. Technol. Lett. 15(10), 1389–1391 (2003).
[CrossRef]

Ogita, M.

C. D. Singh, Y. Shibata, and M. Ogita, “A theoretical study of tapered, porous clad optical fibers for detection of gases,” Sens. Actuators B 92(1–2), 44–48 (2003).
[CrossRef]

Payne, F. P.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron. 11(1–2), 137–148 (1996).
[CrossRef]

H. S. MacKenzie and F. P. Payne, “Evanescent field amplification in a tapered single-mode optical fiber,” Electron. Lett. 26(2), 130–132 (1990).
[CrossRef]

Podshivalov, A. A.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[CrossRef]

Radhakrishnan, P.

M. Sheeba, M. Rajesh, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Fibre optic sensor for the detection of adulterant traces in coconut oil,” Meas. Sci. Technol. 16(11), 2247–2250 (2005).
[CrossRef]

Rajesh, M.

M. Sheeba, M. Rajesh, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Fibre optic sensor for the detection of adulterant traces in coconut oil,” Meas. Sci. Technol. 16(11), 2247–2250 (2005).
[CrossRef]

Riklin, A.

R. Blonder, E. Katz, Y. Cohen, N. Itzhak, A. Riklin, and I. Willner, “Application of redox enzymes for probing the antigen-antibody association at monolayer interfaces: development of amperometric immunosensor electrodes,” Anal. Chem. 68(18), 3151–3157 (1996).
[CrossRef] [PubMed]

Romeo, I.

C. Bariáin, I. R. Matias, I. Romeo, J. Garrido, and M. Laguna, “Detection of volatile organic compound vapors by using a vapochromic material on a tapered optical fiber,” Appl. Phys. Lett. 77(15), 2274–2276 (2000).
[CrossRef]

Ruach-Nir, I.

I. Ruach-Nir, T. A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich, and I. Rubinstein, “Silica-stabilized gold island films for transmission localized surface plasmon sensing,” J. Am. Chem. Soc. 129(1), 84–92 (2007).
[CrossRef] [PubMed]

Rubinstein, I.

I. Ruach-Nir, T. A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich, and I. Rubinstein, “Silica-stabilized gold island films for transmission localized surface plasmon sensing,” J. Am. Chem. Soc. 129(1), 84–92 (2007).
[CrossRef] [PubMed]

Russell, P. S. J.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
[CrossRef] [PubMed]

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “Model protein detection using antibody-immobilized tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm,” Sens. Actuators B 129(2), 716–725 (2008).
[CrossRef]

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125(2), 688–703 (2007).
[CrossRef]

Sharma, A. K.

A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun.245(1-6), 159–169 (2005).

Sheeba, M.

M. Sheeba, M. Rajesh, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Fibre optic sensor for the detection of adulterant traces in coconut oil,” Meas. Sci. Technol. 16(11), 2247–2250 (2005).
[CrossRef]

Shibata, Y.

C. D. Singh, Y. Shibata, and M. Ogita, “A theoretical study of tapered, porous clad optical fibers for detection of gases,” Sens. Actuators B 92(1–2), 44–48 (2003).
[CrossRef]

Shum, P.

J. Zhang, P. Shum, X. P. Cheng, N. Q. Ngo, and S. Y. Li, “Analysis of linearly tapered fiber Bragg grating for dispersion slope compensation,” IEEE Photon. Technol. Lett. 15(10), 1389–1391 (2003).
[CrossRef]

Singh, C. D.

C. D. Singh, Y. Shibata, and M. Ogita, “A theoretical study of tapered, porous clad optical fibers for detection of gases,” Sens. Actuators B 92(1–2), 44–48 (2003).
[CrossRef]

Sooley, K.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Srivastava, S. K.

Sun, D.

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors,” Sensors (Basel) 12(3), 2729–2741 (2012).
[CrossRef] [PubMed]

Tai, Y.-H.

Takamura, Y.

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, and E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen-antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Tamiya, E.

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, and E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen-antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Tseng, S.-M.

Vallabhan, C. P. G.

M. Sheeba, M. Rajesh, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Fibre optic sensor for the detection of adulterant traces in coconut oil,” Meas. Sci. Technol. 16(11), 2247–2250 (2005).
[CrossRef]

Vaskevich, A.

I. Ruach-Nir, T. A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich, and I. Rubinstein, “Silica-stabilized gold island films for transmission localized surface plasmon sensing,” J. Am. Chem. Soc. 129(1), 84–92 (2007).
[CrossRef] [PubMed]

Verma, R. K.

Villatoro, J.

Wadsworth, W. J.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
[CrossRef] [PubMed]

Wang, D. N.

Wang, Y.-P.

Wei, P.-K.

Willner, I.

R. Blonder, E. Katz, Y. Cohen, N. Itzhak, A. Riklin, and I. Willner, “Application of redox enzymes for probing the antigen-antibody association at monolayer interfaces: development of amperometric immunosensor electrodes,” Anal. Chem. 68(18), 3151–3157 (1996).
[CrossRef] [PubMed]

Xiao, L.

Xiong, J.

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors,” Sensors (Basel) 12(3), 2729–2741 (2012).
[CrossRef] [PubMed]

Xu, Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Xue, C.

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors,” Sensors (Basel) 12(3), 2729–2741 (2012).
[CrossRef] [PubMed]

Yamamura, S.

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, and E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen-antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Yariv, A.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1–2), 3–15 (1999).
[CrossRef]

Yuan, Y.

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors,” Sensors (Basel) 12(3), 2729–2741 (2012).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, P. Shum, X. P. Cheng, N. Q. Ngo, and S. Y. Li, “Analysis of linearly tapered fiber Bragg grating for dispersion slope compensation,” IEEE Photon. Technol. Lett. 15(10), 1389–1391 (2003).
[CrossRef]

Zhang, Q.

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors,” Sensors (Basel) 12(3), 2729–2741 (2012).
[CrossRef] [PubMed]

Zheltikov, A. M.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[CrossRef]

Zibaii, M. I.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[CrossRef] [PubMed]

Anal. Chem. (2)

S.-F. Cheng and L.-K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
[CrossRef] [PubMed]

R. Blonder, E. Katz, Y. Cohen, N. Itzhak, A. Riklin, and I. Willner, “Application of redox enzymes for probing the antigen-antibody association at monolayer interfaces: development of amperometric immunosensor electrodes,” Anal. Chem. 68(18), 3151–3157 (1996).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

C. Bariáin, I. R. Matias, I. Romeo, J. Garrido, and M. Laguna, “Detection of volatile organic compound vapors by using a vapochromic material on a tapered optical fiber,” Appl. Phys. Lett. 77(15), 2274–2276 (2000).
[CrossRef]

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Appl. Spectrosc. (1)

Biosens. Bioelectron. (2)

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor: combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8(5), 249–256 (1993).
[CrossRef]

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron. 11(1–2), 137–148 (1996).
[CrossRef]

Chem. Rev. (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Electron. Lett. (1)

H. S. MacKenzie and F. P. Payne, “Evanescent field amplification in a tapered single-mode optical fiber,” Electron. Lett. 26(2), 130–132 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Zhang, P. Shum, X. P. Cheng, N. Q. Ngo, and S. Y. Li, “Analysis of linearly tapered fiber Bragg grating for dispersion slope compensation,” IEEE Photon. Technol. Lett. 15(10), 1389–1391 (2003).
[CrossRef]

Z.-Z. Feng, Y.-H. Hsieh, and N.-K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett. 23(7), 438–440 (2011).
[CrossRef]

J. Am. Chem. Soc. (1)

I. Ruach-Nir, T. A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich, and I. Rubinstein, “Silica-stabilized gold island films for transmission localized surface plasmon sensing,” J. Am. Chem. Soc. 129(1), 84–92 (2007).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B (1)

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

M. Sheeba, M. Rajesh, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Fibre optic sensor for the detection of adulterant traces in coconut oil,” Meas. Sci. Technol. 16(11), 2247–2250 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Sci. Technol. Adv. Mater. (1)

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, and E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen-antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Sens. Actuators B (5)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1–2), 3–15 (1999).
[CrossRef]

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125(2), 688–703 (2007).
[CrossRef]

A. Leung, P. M. Shankar, and R. Mutharasan, “Model protein detection using antibody-immobilized tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm,” Sens. Actuators B 129(2), 716–725 (2008).
[CrossRef]

C. D. Singh, Y. Shibata, and M. Ogita, “A theoretical study of tapered, porous clad optical fibers for detection of gases,” Sens. Actuators B 92(1–2), 44–48 (2003).
[CrossRef]

A. Abdelghani and N. Jaffrezic-Renault, “SPR fibre sensor sensitised by fluorosiloxane polymers,” Sens. Actuators B 74(1-3), 117–123 (2001).
[CrossRef]

Sensors (Basel) (1)

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors,” Sensors (Basel) 12(3), 2729–2741 (2012).
[CrossRef] [PubMed]

Other (1)

A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun.245(1-6), 159–169 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of fiber tapering. (b) The microscopic image of a tapered fiber. Region A: the tapered sensing region; Region B: the transition-stretching region; Region C: the general fiber region.

Fig. 2
Fig. 2

(a) Schematic of self-assembled submonolayer of Au nanoparticles on the tapered fiber surface by using the chemical modification of MPTMS. (b) The SEM image of immobilized Au nanoparticles on Region A of a tapered fiber. (c) The histogram analysis of SEM image shows the mean diameter of immobilized Au nanoparticles is 24 ± 3 nm. (d) The absorption spectrum of immobilized Au nanoparticles on the tapered fiber.

Fig. 3
Fig. 3

(a) The halogen lamp illumination scheme with a spectrometer. (b) Transmission spectra obtained from a tapered fiber LSPR sensor in the presence of different solutions with RI ranging from 1.333 to 1.403. (c) Calibration curves of the spectral shift (left-side) and the relative intensity change (right-side) in response to different RI solutions.

Fig. 4
Fig. 4

(a) The laser illumination scheme with a photodiode (PD) receiver. (b) The transmitted light intensity interrogation of a tapered fiber LSPR sensor in response to different RI solutions. The RI of each introduced solution is shown in the figure. Calibration curve is given in (c). Error bars are obtained from five repetitive measurements using five tapered fiber LSPR sensors.

Fig. 5
Fig. 5

(a) Nonspecific adsorption test of DNP-functionalized tapered fiber LSPR sensor. (b) The relative transmission intensity change of DNP-functionalized tapered fiber LSPR sensor in response to anti-DNP antibody solutions with different concentration ranging from 5 × 10−9 to 1 × 10−6 g/ml. Calibration curve is exhibited in (c). The value of each data point is based on five repetitive measurements using five DNP-functionalized tapered fiber LSPR sensors.

Metrics