Abstract

The signal to noise in two-dimensional spectra recorded in the pump-probe geometry can be significantly improved with a quasi-crossed polarizer configuration, often employed in linear dichroism measurements. Here we examine this method in detail and demonstrate how to analyse and interpret the amplified signals. The angle between transition dipole moments can be determined with better accuracy than in conventional anisotropy measurements, and the method can be used to selectively suppress individual peaks and to efficiently remove scattering contributions. We present spectra of the coupled CO-stretch modes of a Ruthenium-carbonyl complex in DMSO for experimental illustration.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hamm, M. Lim, and R. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B102, 6123–6138 (1998).
    [CrossRef]
  2. M. Khalil, N. Demirdven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A107, 5258–5279 (2003).
    [CrossRef]
  3. D. M. Jonas, “Two-Dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54, 425–463 (2003).
    [CrossRef]
  4. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
    [CrossRef]
  5. R. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Nat. Acad. Sci. U.S.A.104, 14190–14196 (2007).
    [CrossRef]
  6. J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res.40, 75–83 (2007).
    [CrossRef]
  7. Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide i Two-Dimensional infrared spectroscopy of proteins,” Acc. Chem. Res.41, 432–441 (2008).
    [CrossRef]
  8. Y. S. Kim and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and Hydrogen-Bond dynamics,” J. Phys. Chem. B113, 8231–8251 (2009).
    [CrossRef]
  9. J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: An ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol., Opt. Phys.57, 249–321 (2009).
    [CrossRef]
  10. W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast Solvation Dynamics Explored by Femtosecond Photon Echo Spectroscopies,” Ann. Rev. Phys. Chem.49, 99–123 (1998).
    [CrossRef]
  11. G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B15, 1791–1794 (1998).
    [CrossRef]
  12. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett.32, 2966–2968 (2007).
    [CrossRef]
  13. U. Selig, F. Langhojer, F. Dimler, T. Lhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett.33, 2851–2853 (2008).
    [CrossRef]
  14. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011).
    [CrossRef]
  15. S. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. U.S.A.104, 14197–14202 (2007).
    [CrossRef]
  16. S. Shim and M. T. Zanni, “How to turn your pumpprobe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11, 748–761 (2009).
    [CrossRef]
  17. J. Helbing and P. Hamm, “Compact implementation of fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B28, 171–178 (2011).
    [CrossRef]
  18. S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning fourier transform 2D IR interferometer,” Opt. Comm.284, 1062–1066 (2011).
    [CrossRef]
  19. M. T. Zanni, N. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Nat. Acad. Sci. U.S.A.98, 11265 –11270 (2001).
    [CrossRef]
  20. K. Lee, K. Park, S. Park, S. Jeon, and M. Cho, “Polarization-Angle-Scanning 2DIR spectroscopy of coupled anharmonic oscillators: A polarization null angle method,” J. Phys. Chem. B115, 5456–5464 (2010).
    [CrossRef]
  21. S. Woutersen and P. Hamm, “Structure determination of trialanine in water using polarization sensitive Two-Dimensional vibrational spectroscopy,” J. Phys. Chem. B104, 11316–11320 (2000).
    [CrossRef]
  22. R. M. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys.266, 273–284 (2001).
    [CrossRef]
  23. V. Volkov and P. Hamm, “A Two-Dimensional infrared study of localization, structure, and dynamics of a dipeptide in membrane environment,” Biophy. J.87, 4213–4225 (2004).
    [CrossRef]
  24. A. T. Krummel and M. T. Zanni, “DNA vibrational coupling revealed with Two-Dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure,” J. Phys. Chem. B110, 13991–14000 (2006).
    [CrossRef]
  25. M. Ji, M. Odelius, and K. J. Gaffney, “Large angular jump mechanism observed for hydrogen bond exchange in aqueous perchlorate solution,” Science328, 1003–1005 (2010).
    [CrossRef]
  26. V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys.121, 5935–5942 (2004).
    [CrossRef]
  27. W. Xiong and M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett.33, 1371–1373 (2008).
    [CrossRef]
  28. J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Exp.16, 17420–17428 (2008).
    [CrossRef]
  29. D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett.224, 145–154 (1994).
    [CrossRef]
  30. J Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys.134, 124516–124516–10 (2011).
    [CrossRef]
  31. A. Tokmakoff, “Orientational correlation functions and polarization selectivity for nonlinear spectroscopy of isotropic media. I. third order,” J. Chem. Phys.105, 1 (1996).
  32. J. Bredenbeck, J. Helbing, and P. Hamm, “Transient two-dimensional infrared spectroscopy: Exploring the polarization dependence,” J. Chem. Phys.121, 5943–5957 (2004).
    [CrossRef]
  33. R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering usingquasi-phase-cycling in 2D IR experiments,” Opt. Exp.18, 27067–27078 (2010).
    [CrossRef]
  34. A. W. Albrecht, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111, 10934–1956 (1999).
    [CrossRef]
  35. M. Ji and K. J. Gaffney, “Orientational relaxation dynamics in aqueous ionic solution: Polarization-selective two-dimensional infrared study of angular jump-exchange dynamics in aqueous 6M NaClO4,” J. Chem. Phys.134, 044516–044516–13 (2011).
    [CrossRef]
  36. K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509–054509–11 (2011).
    [CrossRef]
  37. Note that in our discussion of polarization-enhanced UV-IR pump-probe spectroscopy in ref. [30], we neglected the symmetry of the problem. Considering ΔA± signals separately, we wrongly stated that measurements with only little amplification were always necessary in order to reliably determine β0 and therefore concluded that our approach constituted only a modest improvement when compared to the conventional method of using parallel and perpendicular probing. This is actually not true and this method can be in fact much more precise for the determination of angles, especially near magic angle, or when the usual anisotropy measurements fail because of low signal to noise.

2011

S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning fourier transform 2D IR interferometer,” Opt. Comm.284, 1062–1066 (2011).
[CrossRef]

J Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys.134, 124516–124516–10 (2011).
[CrossRef]

M. Ji and K. J. Gaffney, “Orientational relaxation dynamics in aqueous ionic solution: Polarization-selective two-dimensional infrared study of angular jump-exchange dynamics in aqueous 6M NaClO4,” J. Chem. Phys.134, 044516–044516–13 (2011).
[CrossRef]

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509–054509–11 (2011).
[CrossRef]

J. Helbing and P. Hamm, “Compact implementation of fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B28, 171–178 (2011).
[CrossRef]

2010

R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering usingquasi-phase-cycling in 2D IR experiments,” Opt. Exp.18, 27067–27078 (2010).
[CrossRef]

M. Ji, M. Odelius, and K. J. Gaffney, “Large angular jump mechanism observed for hydrogen bond exchange in aqueous perchlorate solution,” Science328, 1003–1005 (2010).
[CrossRef]

K. Lee, K. Park, S. Park, S. Jeon, and M. Cho, “Polarization-Angle-Scanning 2DIR spectroscopy of coupled anharmonic oscillators: A polarization null angle method,” J. Phys. Chem. B115, 5456–5464 (2010).
[CrossRef]

2009

Y. S. Kim and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and Hydrogen-Bond dynamics,” J. Phys. Chem. B113, 8231–8251 (2009).
[CrossRef]

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: An ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol., Opt. Phys.57, 249–321 (2009).
[CrossRef]

S. Shim and M. T. Zanni, “How to turn your pumpprobe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11, 748–761 (2009).
[CrossRef]

2008

W. Xiong and M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett.33, 1371–1373 (2008).
[CrossRef]

U. Selig, F. Langhojer, F. Dimler, T. Lhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett.33, 2851–2853 (2008).
[CrossRef]

J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Exp.16, 17420–17428 (2008).
[CrossRef]

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide i Two-Dimensional infrared spectroscopy of proteins,” Acc. Chem. Res.41, 432–441 (2008).
[CrossRef]

2007

R. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Nat. Acad. Sci. U.S.A.104, 14190–14196 (2007).
[CrossRef]

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res.40, 75–83 (2007).
[CrossRef]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett.32, 2966–2968 (2007).
[CrossRef]

S. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. U.S.A.104, 14197–14202 (2007).
[CrossRef]

2006

A. T. Krummel and M. T. Zanni, “DNA vibrational coupling revealed with Two-Dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure,” J. Phys. Chem. B110, 13991–14000 (2006).
[CrossRef]

2005

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef]

2004

V. Volkov and P. Hamm, “A Two-Dimensional infrared study of localization, structure, and dynamics of a dipeptide in membrane environment,” Biophy. J.87, 4213–4225 (2004).
[CrossRef]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient two-dimensional infrared spectroscopy: Exploring the polarization dependence,” J. Chem. Phys.121, 5943–5957 (2004).
[CrossRef]

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys.121, 5935–5942 (2004).
[CrossRef]

2003

M. Khalil, N. Demirdven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A107, 5258–5279 (2003).
[CrossRef]

D. M. Jonas, “Two-Dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54, 425–463 (2003).
[CrossRef]

2001

R. M. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys.266, 273–284 (2001).
[CrossRef]

M. T. Zanni, N. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Nat. Acad. Sci. U.S.A.98, 11265 –11270 (2001).
[CrossRef]

2000

S. Woutersen and P. Hamm, “Structure determination of trialanine in water using polarization sensitive Two-Dimensional vibrational spectroscopy,” J. Phys. Chem. B104, 11316–11320 (2000).
[CrossRef]

1999

A. W. Albrecht, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111, 10934–1956 (1999).
[CrossRef]

1998

G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B15, 1791–1794 (1998).
[CrossRef]

P. Hamm, M. Lim, and R. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B102, 6123–6138 (1998).
[CrossRef]

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast Solvation Dynamics Explored by Femtosecond Photon Echo Spectroscopies,” Ann. Rev. Phys. Chem.49, 99–123 (1998).
[CrossRef]

1996

A. Tokmakoff, “Orientational correlation functions and polarization selectivity for nonlinear spectroscopy of isotropic media. I. third order,” J. Chem. Phys.105, 1 (1996).

1994

D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett.224, 145–154 (1994).
[CrossRef]

Albrecht, A. W.

A. W. Albrecht, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111, 10934–1956 (1999).
[CrossRef]

Bloem, R.

R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering usingquasi-phase-cycling in 2D IR experiments,” Opt. Exp.18, 27067–27078 (2010).
[CrossRef]

Bredenbeck, J.

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys.121, 5935–5942 (2004).
[CrossRef]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient two-dimensional infrared spectroscopy: Exploring the polarization dependence,” J. Chem. Phys.121, 5943–5957 (2004).
[CrossRef]

Brixner, T.

Bruner, B. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef]

Cervetto, V.

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys.121, 5935–5942 (2004).
[CrossRef]

Che, D.

D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett.224, 145–154 (1994).
[CrossRef]

Cho, M.

K. Lee, K. Park, S. Park, S. Jeon, and M. Cho, “Polarization-Angle-Scanning 2DIR spectroscopy of coupled anharmonic oscillators: A polarization null angle method,” J. Phys. Chem. B115, 5456–5464 (2010).
[CrossRef]

Chugh, B.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef]

Chung, H. S.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide i Two-Dimensional infrared spectroscopy of proteins,” Acc. Chem. Res.41, 432–441 (2008).
[CrossRef]

Cowan, M. L.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef]

Dadusc, G.

de Boeij, W. P.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast Solvation Dynamics Explored by Femtosecond Photon Echo Spectroscopies,” Ann. Rev. Phys. Chem.49, 99–123 (1998).
[CrossRef]

DeFlores, L. P.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide i Two-Dimensional infrared spectroscopy of proteins,” Acc. Chem. Res.41, 432–441 (2008).
[CrossRef]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett.32, 2966–2968 (2007).
[CrossRef]

Demirdven, N.

M. Khalil, N. Demirdven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A107, 5258–5279 (2003).
[CrossRef]

Dimler, F.

Donaldson, P.

R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering usingquasi-phase-cycling in 2D IR experiments,” Opt. Exp.18, 27067–27078 (2010).
[CrossRef]

Dwyer, J. R.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef]

Elsaesser, T.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef]

Esquerra, R. M.

D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett.224, 145–154 (1994).
[CrossRef]

Fayer, M. D.

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res.40, 75–83 (2007).
[CrossRef]

Gaffney, K. J.

M. Ji and K. J. Gaffney, “Orientational relaxation dynamics in aqueous ionic solution: Polarization-selective two-dimensional infrared study of angular jump-exchange dynamics in aqueous 6M NaClO4,” J. Chem. Phys.134, 044516–044516–13 (2011).
[CrossRef]

M. Ji, M. Odelius, and K. J. Gaffney, “Large angular jump mechanism observed for hydrogen bond exchange in aqueous perchlorate solution,” Science328, 1003–1005 (2010).
[CrossRef]

Gallagher Faeder, S. M.

A. W. Albrecht, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111, 10934–1956 (1999).
[CrossRef]

Ganim, Z.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide i Two-Dimensional infrared spectroscopy of proteins,” Acc. Chem. Res.41, 432–441 (2008).
[CrossRef]

Garrett-Roe, S.

R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering usingquasi-phase-cycling in 2D IR experiments,” Opt. Exp.18, 27067–27078 (2010).
[CrossRef]

Ge, N.

M. T. Zanni, N. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Nat. Acad. Sci. U.S.A.98, 11265 –11270 (2001).
[CrossRef]

Gieseking, B.

Goodno, G. D.

Hamm,

Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011).
[CrossRef]

Hamm, P.

J. Helbing and P. Hamm, “Compact implementation of fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B28, 171–178 (2011).
[CrossRef]

R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering usingquasi-phase-cycling in 2D IR experiments,” Opt. Exp.18, 27067–27078 (2010).
[CrossRef]

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys.121, 5935–5942 (2004).
[CrossRef]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient two-dimensional infrared spectroscopy: Exploring the polarization dependence,” J. Chem. Phys.121, 5943–5957 (2004).
[CrossRef]

V. Volkov and P. Hamm, “A Two-Dimensional infrared study of localization, structure, and dynamics of a dipeptide in membrane environment,” Biophy. J.87, 4213–4225 (2004).
[CrossRef]

S. Woutersen and P. Hamm, “Structure determination of trialanine in water using polarization sensitive Two-Dimensional vibrational spectroscopy,” J. Phys. Chem. B104, 11316–11320 (2000).
[CrossRef]

P. Hamm, M. Lim, and R. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B102, 6123–6138 (1998).
[CrossRef]

Helbing, J.

J Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys.134, 124516–124516–10 (2011).
[CrossRef]

J. Helbing and P. Hamm, “Compact implementation of fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B28, 171–178 (2011).
[CrossRef]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient two-dimensional infrared spectroscopy: Exploring the polarization dependence,” J. Chem. Phys.121, 5943–5957 (2004).
[CrossRef]

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys.121, 5935–5942 (2004).
[CrossRef]

Hochstrasser, R.

R. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Nat. Acad. Sci. U.S.A.104, 14190–14196 (2007).
[CrossRef]

P. Hamm, M. Lim, and R. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B102, 6123–6138 (1998).
[CrossRef]

Hochstrasser, R. M.

Y. S. Kim and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and Hydrogen-Bond dynamics,” J. Phys. Chem. B113, 8231–8251 (2009).
[CrossRef]

R. M. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys.266, 273–284 (2001).
[CrossRef]

M. T. Zanni, N. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Nat. Acad. Sci. U.S.A.98, 11265 –11270 (2001).
[CrossRef]

Huse, N.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef]

Hybl, J. D.

A. W. Albrecht, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111, 10934–1956 (1999).
[CrossRef]

Jeon, S.

K. Lee, K. Park, S. Park, S. Jeon, and M. Cho, “Polarization-Angle-Scanning 2DIR spectroscopy of coupled anharmonic oscillators: A polarization null angle method,” J. Phys. Chem. B115, 5456–5464 (2010).
[CrossRef]

Ji, M.

M. Ji and K. J. Gaffney, “Orientational relaxation dynamics in aqueous ionic solution: Polarization-selective two-dimensional infrared study of angular jump-exchange dynamics in aqueous 6M NaClO4,” J. Chem. Phys.134, 044516–044516–13 (2011).
[CrossRef]

M. Ji, M. Odelius, and K. J. Gaffney, “Large angular jump mechanism observed for hydrogen bond exchange in aqueous perchlorate solution,” Science328, 1003–1005 (2010).
[CrossRef]

Jonas, D. M.

D. M. Jonas, “Two-Dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54, 425–463 (2003).
[CrossRef]

A. W. Albrecht, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111, 10934–1956 (1999).
[CrossRef]

Jones, K. C.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide i Two-Dimensional infrared spectroscopy of proteins,” Acc. Chem. Res.41, 432–441 (2008).
[CrossRef]

Khalil, M.

M. Khalil, N. Demirdven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A107, 5258–5279 (2003).
[CrossRef]

Kim, Y. S.

Y. S. Kim and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and Hydrogen-Bond dynamics,” J. Phys. Chem. B113, 8231–8251 (2009).
[CrossRef]

M. T. Zanni, N. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Nat. Acad. Sci. U.S.A.98, 11265 –11270 (2001).
[CrossRef]

Kliger, D. S.

D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett.224, 145–154 (1994).
[CrossRef]

Krummel, A. T.

A. T. Krummel and M. T. Zanni, “DNA vibrational coupling revealed with Two-Dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure,” J. Phys. Chem. B110, 13991–14000 (2006).
[CrossRef]

Kubarych, K. J.

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: An ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol., Opt. Phys.57, 249–321 (2009).
[CrossRef]

Kwak, K.

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res.40, 75–83 (2007).
[CrossRef]

Langhojer, F.

Lee, K.

K. Lee, K. Park, S. Park, S. Jeon, and M. Cho, “Polarization-Angle-Scanning 2DIR spectroscopy of coupled anharmonic oscillators: A polarization null angle method,” J. Phys. Chem. B115, 5456–5464 (2010).
[CrossRef]

Lewis, K. L.

J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Exp.16, 17420–17428 (2008).
[CrossRef]

Lhrig, T.

Lim, M.

P. Hamm, M. Lim, and R. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B102, 6123–6138 (1998).
[CrossRef]

Ling, Y. L.

S. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. U.S.A.104, 14197–14202 (2007).
[CrossRef]

Loparo, J. J.

S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning fourier transform 2D IR interferometer,” Opt. Comm.284, 1062–1066 (2011).
[CrossRef]

Mandal, A.

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509–054509–11 (2011).
[CrossRef]

Miller, R. J. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef]

G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B15, 1791–1794 (1998).
[CrossRef]

Myers, J. A.

J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Exp.16, 17420–17428 (2008).
[CrossRef]

Nibbering, E. T. J.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef]

Nicodemus, R. A.

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509–054509–11 (2011).
[CrossRef]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett.32, 2966–2968 (2007).
[CrossRef]

Odelius, M.

M. Ji, M. Odelius, and K. J. Gaffney, “Large angular jump mechanism observed for hydrogen bond exchange in aqueous perchlorate solution,” Science328, 1003–1005 (2010).
[CrossRef]

Ogilvie, J. P.

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: An ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol., Opt. Phys.57, 249–321 (2009).
[CrossRef]

J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Exp.16, 17420–17428 (2008).
[CrossRef]

Olivucci, M.

J Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys.134, 124516–124516–10 (2011).
[CrossRef]

Park, K.

K. Lee, K. Park, S. Park, S. Jeon, and M. Cho, “Polarization-Angle-Scanning 2DIR spectroscopy of coupled anharmonic oscillators: A polarization null angle method,” J. Phys. Chem. B115, 5456–5464 (2010).
[CrossRef]

Park, S.

K. Lee, K. Park, S. Park, S. Jeon, and M. Cho, “Polarization-Angle-Scanning 2DIR spectroscopy of coupled anharmonic oscillators: A polarization null angle method,” J. Phys. Chem. B115, 5456–5464 (2010).
[CrossRef]

Pshenichnikov, M. S.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast Solvation Dynamics Explored by Femtosecond Photon Echo Spectroscopies,” Ann. Rev. Phys. Chem.49, 99–123 (1998).
[CrossRef]

Ramasesha, K.

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509–054509–11 (2011).
[CrossRef]

S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning fourier transform 2D IR interferometer,” Opt. Comm.284, 1062–1066 (2011).
[CrossRef]

Réhault, J

J Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys.134, 124516–124516–10 (2011).
[CrossRef]

Roberts, S. T.

S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning fourier transform 2D IR interferometer,” Opt. Comm.284, 1062–1066 (2011).
[CrossRef]

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509–054509–11 (2011).
[CrossRef]

Schwarz, C.

Selig, U.

Shapiro, D. B.

D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett.224, 145–154 (1994).
[CrossRef]

Shim, S.

S. Shim and M. T. Zanni, “How to turn your pumpprobe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11, 748–761 (2009).
[CrossRef]

S. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. U.S.A.104, 14197–14202 (2007).
[CrossRef]

Smith, A. W.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide i Two-Dimensional infrared spectroscopy of proteins,” Acc. Chem. Res.41, 432–441 (2008).
[CrossRef]

Strasfeld, D. B.

S. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. U.S.A.104, 14197–14202 (2007).
[CrossRef]

Strzalka, H.

R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering usingquasi-phase-cycling in 2D IR experiments,” Opt. Exp.18, 27067–27078 (2010).
[CrossRef]

Tekavec, P. F.

J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Exp.16, 17420–17428 (2008).
[CrossRef]

Tokmakoff, A.

S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning fourier transform 2D IR interferometer,” Opt. Comm.284, 1062–1066 (2011).
[CrossRef]

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509–054509–11 (2011).
[CrossRef]

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide i Two-Dimensional infrared spectroscopy of proteins,” Acc. Chem. Res.41, 432–441 (2008).
[CrossRef]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett.32, 2966–2968 (2007).
[CrossRef]

M. Khalil, N. Demirdven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A107, 5258–5279 (2003).
[CrossRef]

A. Tokmakoff, “Orientational correlation functions and polarization selectivity for nonlinear spectroscopy of isotropic media. I. third order,” J. Chem. Phys.105, 1 (1996).

Volkov, V.

V. Volkov and P. Hamm, “A Two-Dimensional infrared study of localization, structure, and dynamics of a dipeptide in membrane environment,” Biophy. J.87, 4213–4225 (2004).
[CrossRef]

Wiersma, D. A.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast Solvation Dynamics Explored by Femtosecond Photon Echo Spectroscopies,” Ann. Rev. Phys. Chem.49, 99–123 (1998).
[CrossRef]

Woutersen, S.

S. Woutersen and P. Hamm, “Structure determination of trialanine in water using polarization sensitive Two-Dimensional vibrational spectroscopy,” J. Phys. Chem. B104, 11316–11320 (2000).
[CrossRef]

Xiong, W.

Zanirato, V.

J Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys.134, 124516–124516–10 (2011).
[CrossRef]

Zanni, M. T.

S. Shim and M. T. Zanni, “How to turn your pumpprobe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11, 748–761 (2009).
[CrossRef]

W. Xiong and M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett.33, 1371–1373 (2008).
[CrossRef]

S. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. U.S.A.104, 14197–14202 (2007).
[CrossRef]

A. T. Krummel and M. T. Zanni, “DNA vibrational coupling revealed with Two-Dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure,” J. Phys. Chem. B110, 13991–14000 (2006).
[CrossRef]

M. T. Zanni, N. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Nat. Acad. Sci. U.S.A.98, 11265 –11270 (2001).
[CrossRef]

Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011).
[CrossRef]

Zheng, J.

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res.40, 75–83 (2007).
[CrossRef]

Acc. Chem. Res.

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res.40, 75–83 (2007).
[CrossRef]

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide i Two-Dimensional infrared spectroscopy of proteins,” Acc. Chem. Res.41, 432–441 (2008).
[CrossRef]

Adv. At. Mol., Opt. Phys.

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: An ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol., Opt. Phys.57, 249–321 (2009).
[CrossRef]

Ann. Rev. Phys. Chem.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast Solvation Dynamics Explored by Femtosecond Photon Echo Spectroscopies,” Ann. Rev. Phys. Chem.49, 99–123 (1998).
[CrossRef]

Annu. Rev. Phys. Chem.

D. M. Jonas, “Two-Dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54, 425–463 (2003).
[CrossRef]

Biophy. J.

V. Volkov and P. Hamm, “A Two-Dimensional infrared study of localization, structure, and dynamics of a dipeptide in membrane environment,” Biophy. J.87, 4213–4225 (2004).
[CrossRef]

Chem. Phys.

R. M. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys.266, 273–284 (2001).
[CrossRef]

Chem. Phys. Lett.

D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett.224, 145–154 (1994).
[CrossRef]

J. Chem. Phys.

J Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys.134, 124516–124516–10 (2011).
[CrossRef]

A. Tokmakoff, “Orientational correlation functions and polarization selectivity for nonlinear spectroscopy of isotropic media. I. third order,” J. Chem. Phys.105, 1 (1996).

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient two-dimensional infrared spectroscopy: Exploring the polarization dependence,” J. Chem. Phys.121, 5943–5957 (2004).
[CrossRef]

A. W. Albrecht, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111, 10934–1956 (1999).
[CrossRef]

M. Ji and K. J. Gaffney, “Orientational relaxation dynamics in aqueous ionic solution: Polarization-selective two-dimensional infrared study of angular jump-exchange dynamics in aqueous 6M NaClO4,” J. Chem. Phys.134, 044516–044516–13 (2011).
[CrossRef]

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509–054509–11 (2011).
[CrossRef]

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys.121, 5935–5942 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

M. Khalil, N. Demirdven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A107, 5258–5279 (2003).
[CrossRef]

J. Phys. Chem. B

P. Hamm, M. Lim, and R. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B102, 6123–6138 (1998).
[CrossRef]

A. T. Krummel and M. T. Zanni, “DNA vibrational coupling revealed with Two-Dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure,” J. Phys. Chem. B110, 13991–14000 (2006).
[CrossRef]

Y. S. Kim and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and Hydrogen-Bond dynamics,” J. Phys. Chem. B113, 8231–8251 (2009).
[CrossRef]

K. Lee, K. Park, S. Park, S. Jeon, and M. Cho, “Polarization-Angle-Scanning 2DIR spectroscopy of coupled anharmonic oscillators: A polarization null angle method,” J. Phys. Chem. B115, 5456–5464 (2010).
[CrossRef]

S. Woutersen and P. Hamm, “Structure determination of trialanine in water using polarization sensitive Two-Dimensional vibrational spectroscopy,” J. Phys. Chem. B104, 11316–11320 (2000).
[CrossRef]

Nature

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef]

Opt. Comm.

S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning fourier transform 2D IR interferometer,” Opt. Comm.284, 1062–1066 (2011).
[CrossRef]

Opt. Exp.

J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Exp.16, 17420–17428 (2008).
[CrossRef]

R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering usingquasi-phase-cycling in 2D IR experiments,” Opt. Exp.18, 27067–27078 (2010).
[CrossRef]

Opt. Lett.

Phys. Chem. Chem. Phys.

S. Shim and M. T. Zanni, “How to turn your pumpprobe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11, 748–761 (2009).
[CrossRef]

Proc. Nat. Acad. Sci. U.S.A.

S. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. U.S.A.104, 14197–14202 (2007).
[CrossRef]

M. T. Zanni, N. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Nat. Acad. Sci. U.S.A.98, 11265 –11270 (2001).
[CrossRef]

R. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Nat. Acad. Sci. U.S.A.104, 14190–14196 (2007).
[CrossRef]

Science

M. Ji, M. Odelius, and K. J. Gaffney, “Large angular jump mechanism observed for hydrogen bond exchange in aqueous perchlorate solution,” Science328, 1003–1005 (2010).
[CrossRef]

Other

Note that in our discussion of polarization-enhanced UV-IR pump-probe spectroscopy in ref. [30], we neglected the symmetry of the problem. Considering ΔA± signals separately, we wrongly stated that measurements with only little amplification were always necessary in order to reliably determine β0 and therefore concluded that our approach constituted only a modest improvement when compared to the conventional method of using parallel and perpendicular probing. This is actually not true and this method can be in fact much more precise for the determination of angles, especially near magic angle, or when the usual anisotropy measurements fail because of low signal to noise.

Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Top: Schematic representation of the setup. The probe beam passes through a first polarizer LP1 set at an angle β relative to the X axis. Behind the sample, a small fraction leaks through the second polarizer LP2, oriented along the Y axis, and acts as a local oscillator. Signal and LO are dispersed in a spectrometer and detected as a function of probe frequency ω3. The polarization of the pair of pump pulses is changed with a half wave plate between ±45°. Bottom: Orientation of the planes of polarization and magnitude of the different fields. By decreasing β, the magnitude of E3 (probe beam) can be made larger without increasing the (detector-limited) local oscillator field ELO.

Fig. 2
Fig. 2

2D spectra of [Re(CO3) (dmpby)Br] in DMSO recorded with different polarizer angles β, and a population time of 20 ps. The left and middle column show ΔA+ and ΔAsignals, the right column their difference, the enhanced LD component. The scale on the right is normalized to S at β = 2°, and is shared by spectra of ΔA±. The horizontal axis is the probe axis, while the vertical one is the pump axis. The two peaks label #1 and #2 are those used to calculate angles in Fig.4

Fig. 3
Fig. 3

a) polarizer angle β0 for peak elimination in the (2D)-spectra as a function of the intramolecular angle ω between excited and probed transition dipoles. Peaks with positive anisotropy are eliminated in the ΔA signal, those with negative anisotropy in the ΔA+ signal. When the pump polarization is fixed at +45° and β is varied instead of distinguishing between ΔA±, the dashed line is obtained. b) Graphical illustration of the determination of intramolecular angle, assuming ω = 50°, 20% noise and a ±0.2° uncertainty of β. The lines joining the signals ΔA± cross the horizontal axis at cotβ0 ≤ −2 for positive anisotropy and cotβ0 ≥ 3 for negative anisotropy. Inset : possible values of ω determined for β.

Fig. 4
Fig. 4

Maximum of the peaks #I and #II for β = 10°, 20° and 45°. The points with cotβ < 0 correspond to ΔA those with cotβ > 0 are the ΔA+ signals. They are connected by lines intersecting the horizontal axis in β 0 I and β 0 II, which can be used to determine the angle ω between transition dipole moments for peaks #I and #II.

Fig. 5
Fig. 5

a) Different half wave-plate arrangements used to rotate the polarization of the pump pulses E1 and E2, initially X polarized.. b) Scattering signals appearing along the diagonal for ΔA+ has the same sign as for ΔA in c).d) The subtraction of those two signals results in the LD signal free of scattering and background contributions.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I ( ω 3 , t 1 , t 2 ) = | E S + E L O | 2 = | E S | 2 + | E L O | 2 + 2 Re [ E S E L O ]
E S Γ 1 Γ 2 Γ 3 Γ det
Γ 1 = Γ 2 = 1 2 ( X ± Y )
E S y ± 1 2 ( X Y X Y + Y X X Y )
X Y X Y + Y X X Y = Y Y Y Y X X Y Y
Γ 3 = X cos β + Y sin β
E S y ( β ) E 3 ( X ± Y ) ( X ± Y ) ( X cos β + Y sin β ) Y = E 3 sin β ( Y Y Y Y + X X Y Y ) A ¯ ± E 3 cos β ( Y Y Y Y X X Y Y ) L D
E L O = E 3 sin β
Δ A ± = log 10 I ± pump on I pump off 1 ln ( 10 ) [ A ¯ ± L D cot β ) ] .
L D = ln ( 10 ) 2 ( Δ A | | Δ A ) A ¯ = ln ( 10 ) 2 ( Δ A | | + Δ A )
tan β 0 = | 1 + 3 cos 2 ω 7 + cos 2 ω |
α = Δ A | | Δ A Δ A | | + 2 Δ A
cos 2 ω = 1 3 ( 5 α + 1 ) .
α = Δ A | | Δ A Δ A | | + Δ A = 3 α 2 + α
cos 2 ω = 3 α + 1 3 α .
α = Δ A + Δ A Δ A + + Δ A = α cot | β |
cos 2 ω = 1 3 tan β 0 3 + tan β 0 ,

Metrics