Abstract

Abstract: Y3Al5O12:0.06Ce3+, xMn2+ (YAG:0.06Ce,xMn) phosphors have been synthesized and the effect of different charge compensators on the color adjustment has been investigated for the first time. The luminescence properties of Mn2+ singly doped and co-doped with Ce3+ into YAG host have been discussed. It is observed that in singly doped sample, Mn2+ ions not only occupy two kinds of Al3+ sites to generate a yellow and a deep red emission bands, but also occupy Y3+ sites to obtain a green emission band in YAG host. Considering Mn2+ substitution for Al3+, quadrivalence ions including Zr4+, Ge4+ and Si4+ ions are introduced to balance the charge difference. The results show that Si4+ as charge compensator exhibits the best tunable effect on controlling the Mn2+ emissions in YAG:0.06Ce, xMn. In Si4+-Mn2+ co-doped samples, the emission color can be tuned from greenish-yellow to red with increasing the content of Mn2+. The Commission International de L’Eclairage (CIE) chromaticity coordinates are also investigated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Feldmann, T. Justel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
    [CrossRef]
  2. H. A. Höppe, “Recent developments in the field of inorganic phosphors,” Angew. Chem. Int. Ed. Engl.48(20), 3572–3582 (2009).
    [CrossRef] [PubMed]
  3. M. Born and T. Justel, Umweltfreundliche Lichtquellen (Physik Journal, 2003).
  4. A. A. Setlur, W. J. Heward, M. E. Hannah, and U. Happek, “Incorporation of Si4+-N3- into Ce3+-doped garnets for warm white LED phosphors,” Chem. Mater.20(19), 6277–6283 (2008).
    [CrossRef]
  5. H. Jang, W. Im, D. Lee, D. Jeon, and S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
    [CrossRef]
  6. L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs,” Opt. Express18(24), 25177–25182 (2010).
    [CrossRef] [PubMed]
  7. H. Yang and Y. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm- codoped YAG:Ce nanocrystalline phosohors,” J. Lumin.128(10), 1570–1576 (2008).
    [CrossRef]
  8. W. D. Wang, J. K. Tang, S. T. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett.457(1–3), 103–105 (2008).
    [CrossRef]
  9. Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids65(5), 845–850 (2004).
    [CrossRef]
  10. A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Justel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin.129(11), 1356–1361 (2009).
    [CrossRef]
  11. Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.)47(38), 10677–10679 (2011).
    [CrossRef] [PubMed]
  12. Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
    [CrossRef]
  13. T. Obonai, C. Hidaka, and T. Takizawa, “Energy transfer from rare-earth element to Mn in (Ca,Sr)Ga2S4 compounds,” Phys. Status Solidi A206(5), 1026–1029 (2009) (s.).
    [CrossRef]
  14. N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphors suitable for white-light-emitting diodes,” Inorg. Chem.49(23), 10907–10913 (2010).
    [CrossRef] [PubMed]
  15. X. Wang, D. Jia, and W. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
    [CrossRef]
  16. D. T. Palumbo and J. J. Brown, “Electronic states of Mn2+-activated phosphors,” J. Electrochem. Soc.118(7), 1159–1164 (1971).
    [CrossRef]
  17. G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
    [CrossRef]
  18. S. H. Yang and C. Y. Lu, “Influence of doping and coating on the photoluminescence properties of yttrium aluminum garnet phosphors,” J. Electrochem. Soc.154(12), J397–J401 (2007).
    [CrossRef]
  19. V. Singh, R. P. S. Chakradhar, J. L. Rao, and H. Y. Kwak, “Green luminescence and EPR studies on Mn-activated yttrium aluminum garnet phosphor,” Appl. Phys. B98(2–3), 407–415 (2010).
    [CrossRef]
  20. Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “The structure and luminescence properties of a novel orange emitting phosphor Y3MnxAl5-2xSixO12,” Physica B406(4), 864–868 (2011).
    [CrossRef]
  21. S. Geller, “Crystal chemistry of the garnets,” Z. Kristallogr.125(125), 1–47 (1967).
    [CrossRef]

2011

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.)47(38), 10677–10679 (2011).
[CrossRef] [PubMed]

Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “The structure and luminescence properties of a novel orange emitting phosphor Y3MnxAl5-2xSixO12,” Physica B406(4), 864–868 (2011).
[CrossRef]

2010

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphors suitable for white-light-emitting diodes,” Inorg. Chem.49(23), 10907–10913 (2010).
[CrossRef] [PubMed]

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs,” Opt. Express18(24), 25177–25182 (2010).
[CrossRef] [PubMed]

V. Singh, R. P. S. Chakradhar, J. L. Rao, and H. Y. Kwak, “Green luminescence and EPR studies on Mn-activated yttrium aluminum garnet phosphor,” Appl. Phys. B98(2–3), 407–415 (2010).
[CrossRef]

2009

H. A. Höppe, “Recent developments in the field of inorganic phosphors,” Angew. Chem. Int. Ed. Engl.48(20), 3572–3582 (2009).
[CrossRef] [PubMed]

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Justel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin.129(11), 1356–1361 (2009).
[CrossRef]

T. Obonai, C. Hidaka, and T. Takizawa, “Energy transfer from rare-earth element to Mn in (Ca,Sr)Ga2S4 compounds,” Phys. Status Solidi A206(5), 1026–1029 (2009) (s.).
[CrossRef]

2008

A. A. Setlur, W. J. Heward, M. E. Hannah, and U. Happek, “Incorporation of Si4+-N3- into Ce3+-doped garnets for warm white LED phosphors,” Chem. Mater.20(19), 6277–6283 (2008).
[CrossRef]

H. Yang and Y. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm- codoped YAG:Ce nanocrystalline phosohors,” J. Lumin.128(10), 1570–1576 (2008).
[CrossRef]

W. D. Wang, J. K. Tang, S. T. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett.457(1–3), 103–105 (2008).
[CrossRef]

2007

H. Jang, W. Im, D. Lee, D. Jeon, and S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

S. H. Yang and C. Y. Lu, “Influence of doping and coating on the photoluminescence properties of yttrium aluminum garnet phosphors,” J. Electrochem. Soc.154(12), J397–J401 (2007).
[CrossRef]

2004

Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids65(5), 845–850 (2004).
[CrossRef]

2003

C. Feldmann, T. Justel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

X. Wang, D. Jia, and W. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

1971

D. T. Palumbo and J. J. Brown, “Electronic states of Mn2+-activated phosphors,” J. Electrochem. Soc.118(7), 1159–1164 (1971).
[CrossRef]

1967

S. Geller, “Crystal chemistry of the garnets,” Z. Kristallogr.125(125), 1–47 (1967).
[CrossRef]

Bettentrup, H.

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Justel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin.129(11), 1356–1361 (2009).
[CrossRef]

Brown, J. J.

D. T. Palumbo and J. J. Brown, “Electronic states of Mn2+-activated phosphors,” J. Electrochem. Soc.118(7), 1159–1164 (1971).
[CrossRef]

Chakradhar, R. P. S.

V. Singh, R. P. S. Chakradhar, J. L. Rao, and H. Y. Kwak, “Green luminescence and EPR studies on Mn-activated yttrium aluminum garnet phosphor,” Appl. Phys. B98(2–3), 407–415 (2010).
[CrossRef]

Cheng, Z. Y.

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

Feldmann, C.

C. Feldmann, T. Justel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Fu, C. J.

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “The structure and luminescence properties of a novel orange emitting phosphor Y3MnxAl5-2xSixO12,” Physica B406(4), 864–868 (2011).
[CrossRef]

Geller, S.

S. Geller, “Crystal chemistry of the garnets,” Z. Kristallogr.125(125), 1–47 (1967).
[CrossRef]

Geng, D. L.

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

Guo, N.

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphors suitable for white-light-emitting diodes,” Inorg. Chem.49(23), 10907–10913 (2010).
[CrossRef] [PubMed]

Hannah, M. E.

A. A. Setlur, W. J. Heward, M. E. Hannah, and U. Happek, “Incorporation of Si4+-N3- into Ce3+-doped garnets for warm white LED phosphors,” Chem. Mater.20(19), 6277–6283 (2008).
[CrossRef]

Hao, Z. D.

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.)47(38), 10677–10679 (2011).
[CrossRef] [PubMed]

Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs,” Opt. Express18(24), 25177–25182 (2010).
[CrossRef] [PubMed]

Happek, U.

A. A. Setlur, W. J. Heward, M. E. Hannah, and U. Happek, “Incorporation of Si4+-N3- into Ce3+-doped garnets for warm white LED phosphors,” Chem. Mater.20(19), 6277–6283 (2008).
[CrossRef]

Heward, W. J.

A. A. Setlur, W. J. Heward, M. E. Hannah, and U. Happek, “Incorporation of Si4+-N3- into Ce3+-doped garnets for warm white LED phosphors,” Chem. Mater.20(19), 6277–6283 (2008).
[CrossRef]

Hidaka, C.

T. Obonai, C. Hidaka, and T. Takizawa, “Energy transfer from rare-earth element to Mn in (Ca,Sr)Ga2S4 compounds,” Phys. Status Solidi A206(5), 1026–1029 (2009) (s.).
[CrossRef]

Höppe, H. A.

H. A. Höppe, “Recent developments in the field of inorganic phosphors,” Angew. Chem. Int. Ed. Engl.48(20), 3572–3582 (2009).
[CrossRef] [PubMed]

Hsu, S. T.

W. D. Wang, J. K. Tang, S. T. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett.457(1–3), 103–105 (2008).
[CrossRef]

Hu, Y. H.

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “The structure and luminescence properties of a novel orange emitting phosphor Y3MnxAl5-2xSixO12,” Physica B406(4), 864–868 (2011).
[CrossRef]

Huang, Y. J.

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphors suitable for white-light-emitting diodes,” Inorg. Chem.49(23), 10907–10913 (2010).
[CrossRef] [PubMed]

Im, W.

H. Jang, W. Im, D. Lee, D. Jeon, and S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Jang, H.

H. Jang, W. Im, D. Lee, D. Jeon, and S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Jeon, D.

H. Jang, W. Im, D. Lee, D. Jeon, and S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Jia, D.

X. Wang, D. Jia, and W. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

Justel, T.

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Justel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin.129(11), 1356–1361 (2009).
[CrossRef]

C. Feldmann, T. Justel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Kang, F. W.

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “The structure and luminescence properties of a novel orange emitting phosphor Y3MnxAl5-2xSixO12,” Physica B406(4), 864–868 (2011).
[CrossRef]

Kareiva, A.

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Justel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin.129(11), 1356–1361 (2009).
[CrossRef]

Katelnikovas, A.

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Justel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin.129(11), 1356–1361 (2009).
[CrossRef]

Kim, S.

H. Jang, W. Im, D. Lee, D. Jeon, and S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Kim, Y.

H. Yang and Y. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm- codoped YAG:Ce nanocrystalline phosohors,” J. Lumin.128(10), 1570–1576 (2008).
[CrossRef]

Kwak, H. Y.

V. Singh, R. P. S. Chakradhar, J. L. Rao, and H. Y. Kwak, “Green luminescence and EPR studies on Mn-activated yttrium aluminum garnet phosphor,” Appl. Phys. B98(2–3), 407–415 (2010).
[CrossRef]

Lee, D.

H. Jang, W. Im, D. Lee, D. Jeon, and S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Li, G. G.

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

Lin, J.

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

Liu, K.

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphors suitable for white-light-emitting diodes,” Inorg. Chem.49(23), 10907–10913 (2010).
[CrossRef] [PubMed]

Liu, Y. F.

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.)47(38), 10677–10679 (2011).
[CrossRef] [PubMed]

Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

Lu, C. Y.

S. H. Yang and C. Y. Lu, “Influence of doping and coating on the photoluminescence properties of yttrium aluminum garnet phosphors,” J. Electrochem. Soc.154(12), J397–J401 (2007).
[CrossRef]

Luo, Y. S.

Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs,” Opt. Express18(24), 25177–25182 (2010).
[CrossRef] [PubMed]

Mu, Z. F.

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “The structure and luminescence properties of a novel orange emitting phosphor Y3MnxAl5-2xSixO12,” Physica B406(4), 864–868 (2011).
[CrossRef]

Obonai, T.

T. Obonai, C. Hidaka, and T. Takizawa, “Energy transfer from rare-earth element to Mn in (Ca,Sr)Ga2S4 compounds,” Phys. Status Solidi A206(5), 1026–1029 (2009) (s.).
[CrossRef]

Palumbo, D. T.

D. T. Palumbo and J. J. Brown, “Electronic states of Mn2+-activated phosphors,” J. Electrochem. Soc.118(7), 1159–1164 (1971).
[CrossRef]

Pan, Y. X.

Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids65(5), 845–850 (2004).
[CrossRef]

Peng, C.

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

Rao, J. L.

V. Singh, R. P. S. Chakradhar, J. L. Rao, and H. Y. Kwak, “Green luminescence and EPR studies on Mn-activated yttrium aluminum garnet phosphor,” Appl. Phys. B98(2–3), 407–415 (2010).
[CrossRef]

Ronda, C. R.

C. Feldmann, T. Justel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Sakirzanovas, S.

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Justel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin.129(11), 1356–1361 (2009).
[CrossRef]

Schmidt, P. J.

C. Feldmann, T. Justel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Setlur, A. A.

A. A. Setlur, W. J. Heward, M. E. Hannah, and U. Happek, “Incorporation of Si4+-N3- into Ce3+-doped garnets for warm white LED phosphors,” Chem. Mater.20(19), 6277–6283 (2008).
[CrossRef]

Shang, M. M.

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

Singh, V.

V. Singh, R. P. S. Chakradhar, J. L. Rao, and H. Y. Kwak, “Green luminescence and EPR studies on Mn-activated yttrium aluminum garnet phosphor,” Appl. Phys. B98(2–3), 407–415 (2010).
[CrossRef]

Song, Y. H.

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphors suitable for white-light-emitting diodes,” Inorg. Chem.49(23), 10907–10913 (2010).
[CrossRef] [PubMed]

Su, Q.

Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids65(5), 845–850 (2004).
[CrossRef]

Sullivan, B. P.

W. D. Wang, J. K. Tang, S. T. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett.457(1–3), 103–105 (2008).
[CrossRef]

Takizawa, T.

T. Obonai, C. Hidaka, and T. Takizawa, “Energy transfer from rare-earth element to Mn in (Ca,Sr)Ga2S4 compounds,” Phys. Status Solidi A206(5), 1026–1029 (2009) (s.).
[CrossRef]

Tang, J. K.

W. D. Wang, J. K. Tang, S. T. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett.457(1–3), 103–105 (2008).
[CrossRef]

Uhlich, D.

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Justel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin.129(11), 1356–1361 (2009).
[CrossRef]

Wang, J.

W. D. Wang, J. K. Tang, S. T. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett.457(1–3), 103–105 (2008).
[CrossRef]

Wang, L.

Wang, W. D.

W. D. Wang, J. K. Tang, S. T. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett.457(1–3), 103–105 (2008).
[CrossRef]

Wang, X.

X. Wang, D. Jia, and W. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

Wang, X. J.

Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.)47(38), 10677–10679 (2011).
[CrossRef] [PubMed]

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs,” Opt. Express18(24), 25177–25182 (2010).
[CrossRef] [PubMed]

Wu, H. Y.

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “The structure and luminescence properties of a novel orange emitting phosphor Y3MnxAl5-2xSixO12,” Physica B406(4), 864–868 (2011).
[CrossRef]

Wu, M. M.

Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids65(5), 845–850 (2004).
[CrossRef]

Yang, H.

H. Yang and Y. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm- codoped YAG:Ce nanocrystalline phosohors,” J. Lumin.128(10), 1570–1576 (2008).
[CrossRef]

Yang, M.

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphors suitable for white-light-emitting diodes,” Inorg. Chem.49(23), 10907–10913 (2010).
[CrossRef] [PubMed]

Yang, S. H.

S. H. Yang and C. Y. Lu, “Influence of doping and coating on the photoluminescence properties of yttrium aluminum garnet phosphors,” J. Electrochem. Soc.154(12), J397–J401 (2007).
[CrossRef]

Yen, W.

X. Wang, D. Jia, and W. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

You, H. P.

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphors suitable for white-light-emitting diodes,” Inorg. Chem.49(23), 10907–10913 (2010).
[CrossRef] [PubMed]

Zhang, J. H.

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.)47(38), 10677–10679 (2011).
[CrossRef] [PubMed]

Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs,” Opt. Express18(24), 25177–25182 (2010).
[CrossRef] [PubMed]

Zhang, X.

Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.)47(38), 10677–10679 (2011).
[CrossRef] [PubMed]

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs,” Opt. Express18(24), 25177–25182 (2010).
[CrossRef] [PubMed]

Zheng, Y. H.

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphors suitable for white-light-emitting diodes,” Inorg. Chem.49(23), 10907–10913 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater.

C. Feldmann, T. Justel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

H. A. Höppe, “Recent developments in the field of inorganic phosphors,” Angew. Chem. Int. Ed. Engl.48(20), 3572–3582 (2009).
[CrossRef] [PubMed]

Appl. Phys. B

V. Singh, R. P. S. Chakradhar, J. L. Rao, and H. Y. Kwak, “Green luminescence and EPR studies on Mn-activated yttrium aluminum garnet phosphor,” Appl. Phys. B98(2–3), 407–415 (2010).
[CrossRef]

Chem. Commun. (Camb.)

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.)47(38), 10677–10679 (2011).
[CrossRef] [PubMed]

Chem. Mater.

A. A. Setlur, W. J. Heward, M. E. Hannah, and U. Happek, “Incorporation of Si4+-N3- into Ce3+-doped garnets for warm white LED phosphors,” Chem. Mater.20(19), 6277–6283 (2008).
[CrossRef]

Chem. Phys. Lett.

W. D. Wang, J. K. Tang, S. T. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett.457(1–3), 103–105 (2008).
[CrossRef]

Inorg. Chem.

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphors suitable for white-light-emitting diodes,” Inorg. Chem.49(23), 10907–10913 (2010).
[CrossRef] [PubMed]

J. Electrochem. Soc.

D. T. Palumbo and J. J. Brown, “Electronic states of Mn2+-activated phosphors,” J. Electrochem. Soc.118(7), 1159–1164 (1971).
[CrossRef]

S. H. Yang and C. Y. Lu, “Influence of doping and coating on the photoluminescence properties of yttrium aluminum garnet phosphors,” J. Electrochem. Soc.154(12), J397–J401 (2007).
[CrossRef]

J. Lumin.

X. Wang, D. Jia, and W. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

H. Yang and Y. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm- codoped YAG:Ce nanocrystalline phosohors,” J. Lumin.128(10), 1570–1576 (2008).
[CrossRef]

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Justel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin.129(11), 1356–1361 (2009).
[CrossRef]

H. Jang, W. Im, D. Lee, D. Jeon, and S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

J. Mater. Chem.

Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, and J. H. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

J. Phys. Chem. Solids

Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids65(5), 845–850 (2004).
[CrossRef]

Opt. Express

Phys. Status Solidi A

T. Obonai, C. Hidaka, and T. Takizawa, “Energy transfer from rare-earth element to Mn in (Ca,Sr)Ga2S4 compounds,” Phys. Status Solidi A206(5), 1026–1029 (2009) (s.).
[CrossRef]

Physica B

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “The structure and luminescence properties of a novel orange emitting phosphor Y3MnxAl5-2xSixO12,” Physica B406(4), 864–868 (2011).
[CrossRef]

Z. Kristallogr.

S. Geller, “Crystal chemistry of the garnets,” Z. Kristallogr.125(125), 1–47 (1967).
[CrossRef]

Other

M. Born and T. Justel, Umweltfreundliche Lichtquellen (Physik Journal, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

XRD patterns of YAG:0.06Ce, xMn, xSi (0≤x≤0.9) samples.

Fig. 2
Fig. 2

PL and PLE spectra of YAG:0.06Ce (a) and YAG:0.1Mn, 0.1Si (b), the comparison between the PL spectrum of YAG:0.06Ce and the PLE spectrum of YAG:0.1Mn, 0.1Si (c).

Fig. 3
Fig. 3

PL spectra of a typical concentration of Mn2+ co-doped YAG:0.06Ce samples with different charge compensators (the red line) using YAG:0.06Ce (the dot line) as a reference.

Fig. 4
Fig. 4

XRD patterns of Mn2+ co-doped YAG:0.06Ce samples with different charge compensators.

Fig. 5
Fig. 5

PL spectra of YAG:0.06Ce, xMn, xSi (0≤x≤0.9) samples.

Fig. 6
Fig. 6

The CIE chromaticity diagram and photograph of YAG:0.06Ce, xMn, xSi (0≤x≤0.9) samples.

Fig. 7
Fig. 7

Temperature-dependent emission of YAG:0.06Ce,0.04Mn, 0.04Si sample, the inset shows temperature-dependent emission intensities of Com-YAG:Ce and YAG:0.06Ce,0.04Mn, 0.04Si samples (a), the △CIE x and △CIE y and temperature characteristics for YAG:0.06Ce, 0.04Mn, 0.04Si sample and com-YAG:Ce phosphor (b).

Metrics