Abstract

We developed a real-time capture and reconstruction system for three-dimensional (3D) live scenes. In previous research, we used integral photography (IP) to capture 3D images and then generated holograms from the IP images to implement a real-time reconstruction system. In this paper, we use a 4K (3,840 × 2,160) camera to capture IP images and 8K (7,680 × 4,320) liquid crystal display (LCD) panels for the reconstruction of holograms. We investigate two methods for enlarging the 4K images that were captured by integral photography to 8K images. One of the methods increases the number of pixels of each elemental image. The other increases the number of elemental images. In addition, we developed a personal computer (PC) cluster system with graphics processing units (GPUs) for the enlargement of IP images and the generation of holograms from the IP images using fast Fourier transform (FFT). We used the Compute Unified Device Architecture (CUDA) as the development environment for the GPUs. The Fast Fourier transform is performed using the CUFFT (CUDA FFT) library. As a result, we developed an integrated system for performing all processing from the capture to the reconstruction of 3D images by using these components and successfully used this system to reconstruct a 3D live scene at 12 frames per second.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt.26(20), 4351–4357 (1987), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-26-20-4351 .
    [CrossRef] [PubMed]
  2. P. St-Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE1212–20, 174–182 (1990).
    [CrossRef]
  3. N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE1461, 291–302 (1991).
    [CrossRef]
  4. K. Sato, K. Higuchi, and H. Katsuma, “Holographic television by liquid crystal devices,” Proc. SPIE1667, 19–31 (1992).
    [CrossRef]
  5. M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” Proc. ACM SIGGRAPH 95, 387– 394 (1995).
  6. M. Lucente, “Holographic bandwidth compression using spatial subsampling,” Opt. Eng.35(6), 1529–1537 (1996).
    [CrossRef]
  7. M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J.35(3.4), 349–365 (1996).
    [CrossRef]
  8. T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshikawa, K. Sato, and T. Honda, “The fast computation of holograms for the interactive holographic 3D display system,” Proc. SPIE2577, 33–40 (1995).
    [CrossRef]
  9. A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express17(18), 16038–16045 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16038 .
    [CrossRef] [PubMed]
  10. Y. Ichihashi, N. Masuda, M. Tsuge, H. Nakayama, A. Shiraki, T. Shimobaba, and T. Ito, “One-unit system to reconstruct a 3-D movie at a video-rate via electroholography,” Opt. Express17(22), 19691–19697 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19691 .
    [CrossRef] [PubMed]
  11. J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove“Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE7957, 795702, 795702-7 (2011).
    [CrossRef]
  12. J. Barabas, S. Jolly, D. E. Smalley, and V. Michael Bove., “Depth perception and user interface in digital holographic television,” Proc. SPIE8281, 828109, 828109-6 (2012).
    [CrossRef]
  13. Y. Takaki and J. Nakamura, “Development of a Holographic Display Module Using a 4k2k-SLM Based on the Resolution Redistribution Technique,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2012), paper DM2C.5 http://www.opticsinfobase.org/abstract.cfm?URI=DH-2012-DM2C.5 .
  14. T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Display Technol.7(7), 382–390 (2011), http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-7-7-382 .
    [CrossRef]
  15. T. Mishina, R. Oi, J. Arai, F. Okano, and M. Okui, “Three-dimensional image reconstruction of real objects with electronic holography using 4K2K liquid crystal panels,” in Proceedings of the 14th International Display Workshops (IDW’07), 3D3–4L, 2253–2254 (2007).
  16. K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE7619, 761906, 761906-10 (2010).
    [CrossRef]
  17. M. G. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. Phys.7, 821–825 (1908).
  18. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt.37(11), 2034–2045 (1998), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-11-2034 .
    [CrossRef] [PubMed]
  19. R. V. Pole, “3D Imagery and Holograms of Objects Illuminated in White Light,” Appl. Phys. Lett.10(1), 20–22 (1967).
    [CrossRef]
  20. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A15(8), 2059–2065 (1998), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-8-2059 .
    [CrossRef]
  21. T. Naemura, T. Yoshida, and H. Harashima, “3-D computer graphics based on integral photography,” Opt. Express8(4), 255–262 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-8-4-255 .
    [CrossRef] [PubMed]
  22. T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-Angular Resolution Tradeoff in Integral Photography,” Proceedings of Eurographics Symposium on Rendering, 263–272 (2006).
  23. O. Bryngdahl and A. Lohmann, “Single-Sideband Holography,” J. Opt. Soc. Am.58(5), 620–624 (1968), http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-58-5-620 .
    [CrossRef]
  24. T. Mishina, F. Okano, and I. Yuyama, “Time-Alternating Method Based on Single-Sideband Holography with Half-Zone-Plate Processing for the Enlargement of Viewing Zones,” Appl. Opt.38(17), 3703–3713 (1999), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-17-3703 .
    [CrossRef] [PubMed]

2012 (1)

J. Barabas, S. Jolly, D. E. Smalley, and V. Michael Bove., “Depth perception and user interface in digital holographic television,” Proc. SPIE8281, 828109, 828109-6 (2012).
[CrossRef]

2011 (2)

2010 (1)

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE7619, 761906, 761906-10 (2010).
[CrossRef]

2009 (2)

2001 (1)

1999 (1)

1998 (2)

1996 (2)

M. Lucente, “Holographic bandwidth compression using spatial subsampling,” Opt. Eng.35(6), 1529–1537 (1996).
[CrossRef]

M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J.35(3.4), 349–365 (1996).
[CrossRef]

1995 (1)

T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshikawa, K. Sato, and T. Honda, “The fast computation of holograms for the interactive holographic 3D display system,” Proc. SPIE2577, 33–40 (1995).
[CrossRef]

1992 (1)

K. Sato, K. Higuchi, and H. Katsuma, “Holographic television by liquid crystal devices,” Proc. SPIE1667, 19–31 (1992).
[CrossRef]

1991 (1)

N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE1461, 291–302 (1991).
[CrossRef]

1990 (1)

P. St-Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE1212–20, 174–182 (1990).
[CrossRef]

1987 (1)

1968 (1)

1967 (1)

R. V. Pole, “3D Imagery and Holograms of Objects Illuminated in White Light,” Appl. Phys. Lett.10(1), 20–22 (1967).
[CrossRef]

1908 (1)

M. G. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. Phys.7, 821–825 (1908).

Arai, J.

Barabas, J.

J. Barabas, S. Jolly, D. E. Smalley, and V. Michael Bove., “Depth perception and user interface in digital holographic television,” Proc. SPIE8281, 828109, 828109-6 (2012).
[CrossRef]

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove“Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE7957, 795702, 795702-7 (2011).
[CrossRef]

Benton, S. A.

P. St-Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE1212–20, 174–182 (1990).
[CrossRef]

Bove, V. M.

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove“Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE7957, 795702, 795702-7 (2011).
[CrossRef]

Bryngdahl, O.

Harashima, H.

Hashimoto, N.

N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE1461, 291–302 (1991).
[CrossRef]

Higuchi, K.

K. Sato, K. Higuchi, and H. Katsuma, “Holographic television by liquid crystal devices,” Proc. SPIE1667, 19–31 (1992).
[CrossRef]

Honda, T.

T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshikawa, K. Sato, and T. Honda, “The fast computation of holograms for the interactive holographic 3D display system,” Proc. SPIE2577, 33–40 (1995).
[CrossRef]

Hoshino, H.

Ichihashi, Y.

Isono, H.

Ito, T.

Iwata, S.

T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshikawa, K. Sato, and T. Honda, “The fast computation of holograms for the interactive holographic 3D display system,” Proc. SPIE2577, 33–40 (1995).
[CrossRef]

Jepsen, M. L.

P. St-Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE1212–20, 174–182 (1990).
[CrossRef]

Jolly, S.

J. Barabas, S. Jolly, D. E. Smalley, and V. Michael Bove., “Depth perception and user interface in digital holographic television,” Proc. SPIE8281, 828109, 828109-6 (2012).
[CrossRef]

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove“Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE7957, 795702, 795702-7 (2011).
[CrossRef]

Katsuma, H.

K. Sato, K. Higuchi, and H. Katsuma, “Holographic television by liquid crystal devices,” Proc. SPIE1667, 19–31 (1992).
[CrossRef]

Kitamura, K.

N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE1461, 291–302 (1991).
[CrossRef]

Kollin, J.

P. St-Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE1212–20, 174–182 (1990).
[CrossRef]

Kurita, T.

Lippmann, M. G.

M. G. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. Phys.7, 821–825 (1908).

Lohmann, A.

Lucente, M.

M. Lucente, “Holographic bandwidth compression using spatial subsampling,” Opt. Eng.35(6), 1529–1537 (1996).
[CrossRef]

M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J.35(3.4), 349–365 (1996).
[CrossRef]

P. St-Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE1212–20, 174–182 (1990).
[CrossRef]

Masuda, N.

Matsumoto, K.

T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshikawa, K. Sato, and T. Honda, “The fast computation of holograms for the interactive holographic 3D display system,” Proc. SPIE2577, 33–40 (1995).
[CrossRef]

Michael Bove, V.

J. Barabas, S. Jolly, D. E. Smalley, and V. Michael Bove., “Depth perception and user interface in digital holographic television,” Proc. SPIE8281, 828109, 828109-6 (2012).
[CrossRef]

Mishina, T.

Morokawa, S.

N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE1461, 291–302 (1991).
[CrossRef]

Naemura, T.

Nakayama, H.

Nishikawa, O.

T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshikawa, K. Sato, and T. Honda, “The fast computation of holograms for the interactive holographic 3D display system,” Proc. SPIE2577, 33–40 (1995).
[CrossRef]

Niwa, M.

Oi, R.

Okada, T.

T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshikawa, K. Sato, and T. Honda, “The fast computation of holograms for the interactive holographic 3D display system,” Proc. SPIE2577, 33–40 (1995).
[CrossRef]

Okano, F.

Pole, R. V.

R. V. Pole, “3D Imagery and Holograms of Objects Illuminated in White Light,” Appl. Phys. Lett.10(1), 20–22 (1967).
[CrossRef]

Sato, K.

T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshikawa, K. Sato, and T. Honda, “The fast computation of holograms for the interactive holographic 3D display system,” Proc. SPIE2577, 33–40 (1995).
[CrossRef]

K. Sato, K. Higuchi, and H. Katsuma, “Holographic television by liquid crystal devices,” Proc. SPIE1667, 19–31 (1992).
[CrossRef]

Senoh, T.

Shimobaba, T.

Shiraki, A.

Smalley, D. E.

J. Barabas, S. Jolly, D. E. Smalley, and V. Michael Bove., “Depth perception and user interface in digital holographic television,” Proc. SPIE8281, 828109, 828109-6 (2012).
[CrossRef]

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove“Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE7957, 795702, 795702-7 (2011).
[CrossRef]

St-Hilaire, P.

P. St-Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE1212–20, 174–182 (1990).
[CrossRef]

Takada, N.

Tricoles, G.

Tsuge, M.

Underkoffler, J.

P. St-Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE1212–20, 174–182 (1990).
[CrossRef]

Yamamoto, K.

Yoshida, T.

Yoshikawa, H.

T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshikawa, K. Sato, and T. Honda, “The fast computation of holograms for the interactive holographic 3D display system,” Proc. SPIE2577, 33–40 (1995).
[CrossRef]

P. St-Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE1212–20, 174–182 (1990).
[CrossRef]

Yuyama, I.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. V. Pole, “3D Imagery and Holograms of Objects Illuminated in White Light,” Appl. Phys. Lett.10(1), 20–22 (1967).
[CrossRef]

IBM Syst. J. (1)

M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J.35(3.4), 349–365 (1996).
[CrossRef]

J. Display Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. (1)

M. G. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. Phys.7, 821–825 (1908).

Opt. Eng. (1)

M. Lucente, “Holographic bandwidth compression using spatial subsampling,” Opt. Eng.35(6), 1529–1537 (1996).
[CrossRef]

Opt. Express (3)

Proc. SPIE (7)

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove“Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE7957, 795702, 795702-7 (2011).
[CrossRef]

J. Barabas, S. Jolly, D. E. Smalley, and V. Michael Bove., “Depth perception and user interface in digital holographic television,” Proc. SPIE8281, 828109, 828109-6 (2012).
[CrossRef]

P. St-Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE1212–20, 174–182 (1990).
[CrossRef]

N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE1461, 291–302 (1991).
[CrossRef]

K. Sato, K. Higuchi, and H. Katsuma, “Holographic television by liquid crystal devices,” Proc. SPIE1667, 19–31 (1992).
[CrossRef]

T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshikawa, K. Sato, and T. Honda, “The fast computation of holograms for the interactive holographic 3D display system,” Proc. SPIE2577, 33–40 (1995).
[CrossRef]

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE7619, 761906, 761906-10 (2010).
[CrossRef]

Other (4)

T. Mishina, R. Oi, J. Arai, F. Okano, and M. Okui, “Three-dimensional image reconstruction of real objects with electronic holography using 4K2K liquid crystal panels,” in Proceedings of the 14th International Display Workshops (IDW’07), 3D3–4L, 2253–2254 (2007).

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-Angular Resolution Tradeoff in Integral Photography,” Proceedings of Eurographics Symposium on Rendering, 263–272 (2006).

M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” Proc. ACM SIGGRAPH 95, 387– 394 (1995).

Y. Takaki and J. Nakamura, “Development of a Holographic Display Module Using a 4k2k-SLM Based on the Resolution Redistribution Technique,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2012), paper DM2C.5 http://www.opticsinfobase.org/abstract.cfm?URI=DH-2012-DM2C.5 .

Supplementary Material (3)

» Media 1: MOV (2816 KB)     
» Media 2: MOV (2807 KB)     
» Media 3: MOV (3469 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Capturing of a 3D image by integral photography.

Fig. 2
Fig. 2

Lens system for capturing IP images by 4K video camera.

Fig. 3
Fig. 3

Generation of elemental holograms from elemental images.

Fig. 4
Fig. 4

Optical system for electronic holography with 8K LCD panels. In this paper, this real-time capturing and reconstructing system is not available with time-multiplexed expansion of viewing-zone angle because of cutting calculation costs. So ± 1 order illumination lights are cut out on the liquid crystal (LC) shutter 1.

Fig. 5
Fig. 5

Two methods of interpolation and enlargement of the images captured by integral photography.

Fig. 6
Fig. 6

Increasing the number of elemental images in live scene.

Fig. 7
Fig. 7

Real-time capture and reconstruction system with multiple GPUs.

Fig. 8
Fig. 8

Photographs of actual system. (a) is a 4K IP camera component. (b) is a special-purpose component for generating 8K holograms from 4K IP images. (c) is a 3D display component for electronic holography.

Fig. 9
Fig. 9

Photographs of reconstructed images created using method 8K IP (1). (a) is a photograph when the camera is focused on a cube with letters “C” and “T” at approximately 4 mm away from the hologram. (b) is a photograph when the camera is focused on letters “3” and “D” at approximately 50 mm away from hologram.

Fig. 10
Fig. 10

Movies of 3D objects reconstructed by our system. (a) is a movie of reconstructed images created using method 8K IP (1) (Media 1). (b) is a movie of reconstructed images created using method 8K IP (2) (Media 2). (c) is a movie when an object is put on a turntable (Media 3).

Fig. 11
Fig. 11

(a) 4K images captured by IP camera are divided into four parts in this way and each one of the HD images is treated by one of 4 PCs. (b) Elemental images along the boundary of HD1 and HD2. Elemental images are not lined up along boundary because of skew of field lens and so on. (c) Data gaps occur on boundaries of IP images when each HD IP image is captured on the memory of each PC.

Tables (2)

Tables Icon

Table 1 Specifications of the real-time capture and reconstruction system with multiple GPUs

Tables Icon

Table 2 Performance of the real-time capture and reconstruction system with multiple GPUs

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g 1 ( x 1 , y 1 )= 1 jλf e jkf g 0 ( x 0 , y 0 ) e jk ( x 1 x 0 ) 2 + ( y 1 y 0 ) 2 2f d x 0 d y 0 ,
g 2 ( x 2 , y 2 )= g 2 ( x 1 , y 1 )= g 1 ( x 1 , y 1 ) e jk x 1 2 + y 1 2 2f ,
g 3 ( x 3 , y 3 )= 1 jλd e jkd g 2 ( x 2 , y 2 ) e jk ( x 3 x 2 ) 2 + ( y 3 y 2 ) 2 2d d x 2 d y 2 ,
g 3 ( x 3 , y 3 )= e 2jkf λf g 0 ( x 0 , y 0 ) e j2π( x 0 x 3 + y 0 y 3 λf ) d x 0 d y 0
g 3 ( x 3 Δ p m , y 3 Δ p n )= y 0 =1 N x 0 =1 M g 0 ( x 0 Δ p m , y 0 Δ p n ) e j2π( x 0 x 3 Δ p m 2 λf + y 0 y 3 Δ p n 2 λf ) ,
MΔ p m 2 =λf,NΔ p n 2 =λf

Metrics