Abstract

Aluminium-coated micromirrors driven by electrothermal and electromagnetic actuations have been demonstrated for 3-D variable optical attenuation applications. Three types of attenuation schemes based on electrothermal, electromagnetic and hybrid, i.e. combination of electrothermal and electromagnetic, actuations have been developed. In addition, two different designs have been fabricated and characterized to investigate the effects of the variations made to both the actuators on the optical attenuation performances of the micromirror. Our unique design of using both ET and EM actuators simultaneously to achieve attenuation is the first demonstration of such hybrid driven CMOS compatible MEMS VOA device.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
    [CrossRef]
  2. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol.24(12), 4433–4454 (2006).
    [CrossRef]
  3. K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys.162(2), 336–347 (2010).
    [CrossRef]
  4. K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng.21(7), 075001 (2011).
    [CrossRef]
  5. K. H. Koh, T. Kobayashi, and C. Lee, “A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film s-shaped actuator,” Opt. Express19(15), 13812–13824 (2011).
    [CrossRef] [PubMed]
  6. A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face Imaging,” Opt. Express15(5), 2445–2453 (2007).
    [CrossRef] [PubMed]
  7. J. Sun, S. J. Lee, L. Wu, M. Sarntinoranont, and H. Xie, “Refractive index measurement of acute rat brain tissue slices using optical coherence tomography,” Opt. Express20(2), 1084–1095 (2012).
    [CrossRef] [PubMed]
  8. C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith. MEMS MOEMS7, 021003 (2008).
  9. H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” J. Microelectromech. Syst.5(4), 231–237 (1996).
    [CrossRef]
  10. Y.-J. Yang, B.-T. Liao, and W.-C. Kuo, “A novel 2 × 2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng.17(5), 875–882 (2007).
    [CrossRef]
  11. A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
    [CrossRef]
  12. C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron.5(1), 18–25 (1999).
    [CrossRef]
  13. C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett.11(2), 233–235 (1999).
    [CrossRef]
  14. A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng.13(3), 400–411 (2003).
    [CrossRef]
  15. C. Lee, Y.-S. Lin, Y.-J. Lai, M. H. Tasi, C. Chen, and C.-Y. Wu, “3-V driven pop-up micromirror for reflecting light toward out-of-plane direction for VOA applications,” IEEE Photon. Technol. Lett.16(4), 1044–1046 (2004).
    [CrossRef]
  16. R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng.14(12), 1700–1710 (2004).
    [CrossRef]
  17. H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, and E. H. Khoo, “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photon. Technol. Lett.17(2), 402–404 (2005).
    [CrossRef]
  18. J. A. Yeh, S.-S. Jiang, and C. Lee, “MOEMS variable optical attenuators using rotary comb drive actuators,” IEEE Photon. Technol. Lett.18(10), 1170–1172 (2006).
    [CrossRef]
  19. C. Chen, C. Lee, and J. A. Yeh, “Retro-reflection type MOEMS VOA,” IEEE Photon. Technol. Lett.16(10), 2290–2292 (2004).
    [CrossRef]
  20. T.-S. Lim, C.-H. Ji, C.-H. Oh, H. Kwon, Y. Yee, and J. U. Bu, “Electrostatic MEMS variable optical attenuator with rotating folded micromirror,” IEEE J. Sel. Top. Quantum Electron.10(3), 558–562 (2004).
    [CrossRef]
  21. C. Lee, “A MEMS VOA Using Electrothermal Actuators,” J. Lightwave Technol.25(2), 490–498 (2007).
    [CrossRef]
  22. X. M. Zhang, A. Q. Liu, H. Cai, A. B. Yu, and C. Lu, “Retro-Axial VOA using parabolic mirror pair,” IEEE Photon. Technol. Lett.19(9), 692–694 (2007).
    [CrossRef]
  23. N. A. Riza and S. Sumriddetchkajorn, “Digitally controlled fault-tolerant multiwavelength programmable fiber-optic attenuator using a two-dimensional digital micromirror device,” Opt. Lett.24(5), 282–284 (1999).
    [CrossRef] [PubMed]
  24. W. Sun, W. Noell, M. Zickar, M. J. Mughal, F. Perez, N. A. Riza, and N. F. de Rooij, “Design, simulation, fabrication, and characterization of a digital variable optical attenuator,” J. Microelectromech. Syst.15(5), 1190–1200 (2006).
    [CrossRef]
  25. K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron.10(3), 570–578 (2004).
    [CrossRef]
  26. C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009).
    [CrossRef]
  27. K. H. Koh, C. Lee, and T. Kobayashi, “A piezoelectric-driven three-dimensional MEMS VOA using attenuation mechanism with combination of rotational and translational effects,” J. Microelectromech. Syst.19(6), 1370–1379 (2010).
    [CrossRef]
  28. H.-T. Hsieh, C.-H. Li, and G.-D. J. Su, “Amorphous fluoropolymer micromembrane for variable optical attenuation,” Sens. Actuators A Phys.168(1), 172–178 (2011).
    [CrossRef]
  29. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng.18(11), 115016 (2008).
    [CrossRef]
  30. P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng.21(12), 125027 (2011).
    [CrossRef]
  31. I. J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces,” IEEE Trans. Microw. Theory Tech.53(7), 2450–2457 (2005).
    [CrossRef]
  32. B. Yang, C. Lee, W. L. Kee, and S. P. Lim, “Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms,” J. Micro/Nanolith. MEMS MOEMS9, 023002 (2010).

2012 (1)

2011 (4)

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng.21(7), 075001 (2011).
[CrossRef]

K. H. Koh, T. Kobayashi, and C. Lee, “A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film s-shaped actuator,” Opt. Express19(15), 13812–13824 (2011).
[CrossRef] [PubMed]

H.-T. Hsieh, C.-H. Li, and G.-D. J. Su, “Amorphous fluoropolymer micromembrane for variable optical attenuation,” Sens. Actuators A Phys.168(1), 172–178 (2011).
[CrossRef]

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng.21(12), 125027 (2011).
[CrossRef]

2010 (3)

K. H. Koh, C. Lee, and T. Kobayashi, “A piezoelectric-driven three-dimensional MEMS VOA using attenuation mechanism with combination of rotational and translational effects,” J. Microelectromech. Syst.19(6), 1370–1379 (2010).
[CrossRef]

B. Yang, C. Lee, W. L. Kee, and S. P. Lim, “Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms,” J. Micro/Nanolith. MEMS MOEMS9, 023002 (2010).

K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys.162(2), 336–347 (2010).
[CrossRef]

2009 (1)

C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009).
[CrossRef]

2008 (2)

Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng.18(11), 115016 (2008).
[CrossRef]

C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith. MEMS MOEMS7, 021003 (2008).

2007 (5)

A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face Imaging,” Opt. Express15(5), 2445–2453 (2007).
[CrossRef] [PubMed]

Y.-J. Yang, B.-T. Liao, and W.-C. Kuo, “A novel 2 × 2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng.17(5), 875–882 (2007).
[CrossRef]

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
[CrossRef]

C. Lee, “A MEMS VOA Using Electrothermal Actuators,” J. Lightwave Technol.25(2), 490–498 (2007).
[CrossRef]

X. M. Zhang, A. Q. Liu, H. Cai, A. B. Yu, and C. Lu, “Retro-Axial VOA using parabolic mirror pair,” IEEE Photon. Technol. Lett.19(9), 692–694 (2007).
[CrossRef]

2006 (3)

W. Sun, W. Noell, M. Zickar, M. J. Mughal, F. Perez, N. A. Riza, and N. F. de Rooij, “Design, simulation, fabrication, and characterization of a digital variable optical attenuator,” J. Microelectromech. Syst.15(5), 1190–1200 (2006).
[CrossRef]

M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol.24(12), 4433–4454 (2006).
[CrossRef]

J. A. Yeh, S.-S. Jiang, and C. Lee, “MOEMS variable optical attenuators using rotary comb drive actuators,” IEEE Photon. Technol. Lett.18(10), 1170–1172 (2006).
[CrossRef]

2005 (2)

H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, and E. H. Khoo, “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photon. Technol. Lett.17(2), 402–404 (2005).
[CrossRef]

I. J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces,” IEEE Trans. Microw. Theory Tech.53(7), 2450–2457 (2005).
[CrossRef]

2004 (5)

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron.10(3), 570–578 (2004).
[CrossRef]

C. Chen, C. Lee, and J. A. Yeh, “Retro-reflection type MOEMS VOA,” IEEE Photon. Technol. Lett.16(10), 2290–2292 (2004).
[CrossRef]

T.-S. Lim, C.-H. Ji, C.-H. Oh, H. Kwon, Y. Yee, and J. U. Bu, “Electrostatic MEMS variable optical attenuator with rotating folded micromirror,” IEEE J. Sel. Top. Quantum Electron.10(3), 558–562 (2004).
[CrossRef]

C. Lee, Y.-S. Lin, Y.-J. Lai, M. H. Tasi, C. Chen, and C.-Y. Wu, “3-V driven pop-up micromirror for reflecting light toward out-of-plane direction for VOA applications,” IEEE Photon. Technol. Lett.16(4), 1044–1046 (2004).
[CrossRef]

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng.14(12), 1700–1710 (2004).
[CrossRef]

2003 (1)

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng.13(3), 400–411 (2003).
[CrossRef]

2002 (1)

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

1999 (3)

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron.5(1), 18–25 (1999).
[CrossRef]

C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett.11(2), 233–235 (1999).
[CrossRef]

N. A. Riza and S. Sumriddetchkajorn, “Digitally controlled fault-tolerant multiwavelength programmable fiber-optic attenuator using a two-dimensional digital micromirror device,” Opt. Lett.24(5), 282–284 (1999).
[CrossRef] [PubMed]

1996 (1)

H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” J. Microelectromech. Syst.5(4), 231–237 (1996).
[CrossRef]

Aguirre, A. D.

Aksyuk, V.

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron.5(1), 18–25 (1999).
[CrossRef]

Baek, S.-H.

I. J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces,” IEEE Trans. Microw. Theory Tech.53(7), 2450–2457 (2005).
[CrossRef]

Barber, B.

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron.5(1), 18–25 (1999).
[CrossRef]

Bishop, D.

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron.5(1), 18–25 (1999).
[CrossRef]

Bu, J. U.

T.-S. Lim, C.-H. Ji, C.-H. Oh, H. Kwon, Y. Yee, and J. U. Bu, “Electrostatic MEMS variable optical attenuator with rotating folded micromirror,” IEEE J. Sel. Top. Quantum Electron.10(3), 558–562 (2004).
[CrossRef]

Cai, H.

X. M. Zhang, A. Q. Liu, H. Cai, A. B. Yu, and C. Lu, “Retro-Axial VOA using parabolic mirror pair,” IEEE Photon. Technol. Lett.19(9), 692–694 (2007).
[CrossRef]

H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, and E. H. Khoo, “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photon. Technol. Lett.17(2), 402–404 (2005).
[CrossRef]

Chen, C.

C. Chen, C. Lee, and J. A. Yeh, “Retro-reflection type MOEMS VOA,” IEEE Photon. Technol. Lett.16(10), 2290–2292 (2004).
[CrossRef]

C. Lee, Y.-S. Lin, Y.-J. Lai, M. H. Tasi, C. Chen, and C.-Y. Wu, “3-V driven pop-up micromirror for reflecting light toward out-of-plane direction for VOA applications,” IEEE Photon. Technol. Lett.16(4), 1044–1046 (2004).
[CrossRef]

Chen, Y.

Cho, I. J.

I. J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces,” IEEE Trans. Microw. Theory Tech.53(7), 2450–2457 (2005).
[CrossRef]

Chong, C.

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron.10(3), 570–578 (2004).
[CrossRef]

Clerc, P. A.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Dandliker, R.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

de Rooij, N.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

de Rooij, N. F.

W. Sun, W. Noell, M. Zickar, M. J. Mughal, F. Perez, N. A. Riza, and N. F. de Rooij, “Design, simulation, fabrication, and characterization of a digital variable optical attenuator,” J. Microelectromech. Syst.15(5), 1190–1200 (2006).
[CrossRef]

C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett.11(2), 233–235 (1999).
[CrossRef]

Dellmann, L.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Fan, L.

Feiwen, L.

Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng.18(11), 115016 (2008).
[CrossRef]

Ford, J. E.

Fujimoto, J. G.

Fujita, H.

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron.10(3), 570–578 (2004).
[CrossRef]

H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” J. Microelectromech. Syst.5(4), 231–237 (1996).
[CrossRef]

Giles, C. R.

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron.5(1), 18–25 (1999).
[CrossRef]

Griss, P.

C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett.11(2), 233–235 (1999).
[CrossRef]

Guangya, Z.

Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng.18(11), 115016 (2008).
[CrossRef]

Guldimann, B.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Hertz, P. R.

Herzig, H. P.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Hongbin, Y.

Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng.18(11), 115016 (2008).
[CrossRef]

Hsiao, F.-L.

K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys.162(2), 336–347 (2010).
[CrossRef]

C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009).
[CrossRef]

Hsieh, H.-T.

H.-T. Hsieh, C.-H. Li, and G.-D. J. Su, “Amorphous fluoropolymer micromembrane for variable optical attenuation,” Sens. Actuators A Phys.168(1), 172–178 (2011).
[CrossRef]

Isamoto, K.

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron.10(3), 570–578 (2004).
[CrossRef]

Ji, C.-H.

T.-S. Lim, C.-H. Ji, C.-H. Oh, H. Kwon, Y. Yee, and J. U. Bu, “Electrostatic MEMS variable optical attenuator with rotating folded micromirror,” IEEE J. Sel. Top. Quantum Electron.10(3), 558–562 (2004).
[CrossRef]

Jiang, S.-S.

J. A. Yeh, S.-S. Jiang, and C. Lee, “MOEMS variable optical attenuators using rotary comb drive actuators,” IEEE Photon. Technol. Lett.18(10), 1170–1172 (2006).
[CrossRef]

Kato, K.

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron.10(3), 570–578 (2004).
[CrossRef]

Kee, W. L.

B. Yang, C. Lee, W. L. Kee, and S. P. Lim, “Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms,” J. Micro/Nanolith. MEMS MOEMS9, 023002 (2010).

Khoo, E. H.

H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, and E. H. Khoo, “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photon. Technol. Lett.17(2), 402–404 (2005).
[CrossRef]

Kloss, A.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng.21(12), 125027 (2011).
[CrossRef]

Kobayashi, T.

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng.21(7), 075001 (2011).
[CrossRef]

K. H. Koh, T. Kobayashi, and C. Lee, “A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film s-shaped actuator,” Opt. Express19(15), 13812–13824 (2011).
[CrossRef] [PubMed]

K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys.162(2), 336–347 (2010).
[CrossRef]

K. H. Koh, C. Lee, and T. Kobayashi, “A piezoelectric-driven three-dimensional MEMS VOA using attenuation mechanism with combination of rotational and translational effects,” J. Microelectromech. Syst.19(6), 1370–1379 (2010).
[CrossRef]

C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009).
[CrossRef]

Koh, K. H.

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng.21(7), 075001 (2011).
[CrossRef]

K. H. Koh, T. Kobayashi, and C. Lee, “A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film s-shaped actuator,” Opt. Express19(15), 13812–13824 (2011).
[CrossRef] [PubMed]

K. H. Koh, C. Lee, and T. Kobayashi, “A piezoelectric-driven three-dimensional MEMS VOA using attenuation mechanism with combination of rotational and translational effects,” J. Microelectromech. Syst.19(6), 1370–1379 (2010).
[CrossRef]

K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys.162(2), 336–347 (2010).
[CrossRef]

C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009).
[CrossRef]

Kuo, W.-C.

Y.-J. Yang, B.-T. Liao, and W.-C. Kuo, “A novel 2 × 2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng.17(5), 875–882 (2007).
[CrossRef]

Kwon, H.

T.-S. Lim, C.-H. Ji, C.-H. Oh, H. Kwon, Y. Yee, and J. U. Bu, “Electrostatic MEMS variable optical attenuator with rotating folded micromirror,” IEEE J. Sel. Top. Quantum Electron.10(3), 558–562 (2004).
[CrossRef]

Lai, Y.-J.

C. Lee, Y.-S. Lin, Y.-J. Lai, M. H. Tasi, C. Chen, and C.-Y. Wu, “3-V driven pop-up micromirror for reflecting light toward out-of-plane direction for VOA applications,” IEEE Photon. Technol. Lett.16(4), 1044–1046 (2004).
[CrossRef]

Lee, C.

K. H. Koh, T. Kobayashi, and C. Lee, “A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film s-shaped actuator,” Opt. Express19(15), 13812–13824 (2011).
[CrossRef] [PubMed]

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng.21(7), 075001 (2011).
[CrossRef]

K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys.162(2), 336–347 (2010).
[CrossRef]

B. Yang, C. Lee, W. L. Kee, and S. P. Lim, “Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms,” J. Micro/Nanolith. MEMS MOEMS9, 023002 (2010).

K. H. Koh, C. Lee, and T. Kobayashi, “A piezoelectric-driven three-dimensional MEMS VOA using attenuation mechanism with combination of rotational and translational effects,” J. Microelectromech. Syst.19(6), 1370–1379 (2010).
[CrossRef]

C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009).
[CrossRef]

C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith. MEMS MOEMS7, 021003 (2008).

C. Lee, “A MEMS VOA Using Electrothermal Actuators,” J. Lightwave Technol.25(2), 490–498 (2007).
[CrossRef]

J. A. Yeh, S.-S. Jiang, and C. Lee, “MOEMS variable optical attenuators using rotary comb drive actuators,” IEEE Photon. Technol. Lett.18(10), 1170–1172 (2006).
[CrossRef]

C. Chen, C. Lee, and J. A. Yeh, “Retro-reflection type MOEMS VOA,” IEEE Photon. Technol. Lett.16(10), 2290–2292 (2004).
[CrossRef]

C. Lee, Y.-S. Lin, Y.-J. Lai, M. H. Tasi, C. Chen, and C.-Y. Wu, “3-V driven pop-up micromirror for reflecting light toward out-of-plane direction for VOA applications,” IEEE Photon. Technol. Lett.16(4), 1044–1046 (2004).
[CrossRef]

Lee, S. J.

Li, C.-H.

H.-T. Hsieh, C.-H. Li, and G.-D. J. Su, “Amorphous fluoropolymer micromembrane for variable optical attenuation,” Sens. Actuators A Phys.168(1), 172–178 (2011).
[CrossRef]

Liao, B.-T.

Y.-J. Yang, B.-T. Liao, and W.-C. Kuo, “A novel 2 × 2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng.17(5), 875–882 (2007).
[CrossRef]

Liebetraut, P.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng.21(12), 125027 (2011).
[CrossRef]

Lim, S. P.

B. Yang, C. Lee, W. L. Kee, and S. P. Lim, “Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms,” J. Micro/Nanolith. MEMS MOEMS9, 023002 (2010).

Lim, T.-S.

T.-S. Lim, C.-H. Ji, C.-H. Oh, H. Kwon, Y. Yee, and J. U. Bu, “Electrostatic MEMS variable optical attenuator with rotating folded micromirror,” IEEE J. Sel. Top. Quantum Electron.10(3), 558–562 (2004).
[CrossRef]

Lin, Y.-S.

C. Lee, Y.-S. Lin, Y.-J. Lai, M. H. Tasi, C. Chen, and C.-Y. Wu, “3-V driven pop-up micromirror for reflecting light toward out-of-plane direction for VOA applications,” IEEE Photon. Technol. Lett.16(4), 1044–1046 (2004).
[CrossRef]

Liu, A. Q.

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
[CrossRef]

X. M. Zhang, A. Q. Liu, H. Cai, A. B. Yu, and C. Lu, “Retro-Axial VOA using parabolic mirror pair,” IEEE Photon. Technol. Lett.19(9), 692–694 (2007).
[CrossRef]

H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, and E. H. Khoo, “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photon. Technol. Lett.17(2), 402–404 (2005).
[CrossRef]

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng.13(3), 400–411 (2003).
[CrossRef]

Liu, Z. S.

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng.13(3), 400–411 (2003).
[CrossRef]

Lu, C.

X. M. Zhang, A. Q. Liu, H. Cai, A. B. Yu, and C. Lu, “Retro-Axial VOA using parabolic mirror pair,” IEEE Photon. Technol. Lett.19(9), 692–694 (2007).
[CrossRef]

H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, and E. H. Khoo, “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photon. Technol. Lett.17(2), 402–404 (2005).
[CrossRef]

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng.13(3), 400–411 (2003).
[CrossRef]

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng.13(3), 400–411 (2003).
[CrossRef]

Manzardo, O.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Marxer, C.

C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett.11(2), 233–235 (1999).
[CrossRef]

Marxer, C. R.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Mönch, W.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng.21(12), 125027 (2011).
[CrossRef]

Morosawa, A.

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron.10(3), 570–578 (2004).
[CrossRef]

Mughal, M. J.

W. Sun, W. Noell, M. Zickar, M. J. Mughal, F. Perez, N. A. Riza, and N. F. de Rooij, “Design, simulation, fabrication, and characterization of a digital variable optical attenuator,” J. Microelectromech. Syst.15(5), 1190–1200 (2006).
[CrossRef]

Müller, P.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng.21(12), 125027 (2011).
[CrossRef]

Noell, W.

W. Sun, W. Noell, M. Zickar, M. J. Mughal, F. Perez, N. A. Riza, and N. F. de Rooij, “Design, simulation, fabrication, and characterization of a digital variable optical attenuator,” J. Microelectromech. Syst.15(5), 1190–1200 (2006).
[CrossRef]

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Oh, C.-H.

T.-S. Lim, C.-H. Ji, C.-H. Oh, H. Kwon, Y. Yee, and J. U. Bu, “Electrostatic MEMS variable optical attenuator with rotating folded micromirror,” IEEE J. Sel. Top. Quantum Electron.10(3), 558–562 (2004).
[CrossRef]

Perez, F.

W. Sun, W. Noell, M. Zickar, M. J. Mughal, F. Perez, N. A. Riza, and N. F. de Rooij, “Design, simulation, fabrication, and characterization of a digital variable optical attenuator,” J. Microelectromech. Syst.15(5), 1190–1200 (2006).
[CrossRef]

Pinjala, D.

C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009).
[CrossRef]

Piyawattanametha, W.

Ramana, P. V.

C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009).
[CrossRef]

Riza, N. A.

W. Sun, W. Noell, M. Zickar, M. J. Mughal, F. Perez, N. A. Riza, and N. F. de Rooij, “Design, simulation, fabrication, and characterization of a digital variable optical attenuator,” J. Microelectromech. Syst.15(5), 1190–1200 (2006).
[CrossRef]

N. A. Riza and S. Sumriddetchkajorn, “Digitally controlled fault-tolerant multiwavelength programmable fiber-optic attenuator using a two-dimensional digital micromirror device,” Opt. Lett.24(5), 282–284 (1999).
[CrossRef] [PubMed]

Ruel, R.

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron.5(1), 18–25 (1999).
[CrossRef]

Sarntinoranont, M.

Siong, C. F.

Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng.18(11), 115016 (2008).
[CrossRef]

Solgaard, O.

Song, T.

I. J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces,” IEEE Trans. Microw. Theory Tech.53(7), 2450–2457 (2005).
[CrossRef]

Stagg, J.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng.14(12), 1700–1710 (2004).
[CrossRef]

Stulz, L.

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron.5(1), 18–25 (1999).
[CrossRef]

Su, G.-D. J.

H.-T. Hsieh, C.-H. Li, and G.-D. J. Su, “Amorphous fluoropolymer micromembrane for variable optical attenuation,” Sens. Actuators A Phys.168(1), 172–178 (2011).
[CrossRef]

Sumriddetchkajorn, S.

Sun, J.

Sun, W.

W. Sun, W. Noell, M. Zickar, M. J. Mughal, F. Perez, N. A. Riza, and N. F. de Rooij, “Design, simulation, fabrication, and characterization of a digital variable optical attenuator,” J. Microelectromech. Syst.15(5), 1190–1200 (2006).
[CrossRef]

Syms, R. R. A.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng.14(12), 1700–1710 (2004).
[CrossRef]

Tan, C. W.

C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009).
[CrossRef]

Tasi, M. H.

C. Lee, Y.-S. Lin, Y.-J. Lai, M. H. Tasi, C. Chen, and C.-Y. Wu, “3-V driven pop-up micromirror for reflecting light toward out-of-plane direction for VOA applications,” IEEE Photon. Technol. Lett.16(4), 1044–1046 (2004).
[CrossRef]

Toshiyoshi, H.

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron.10(3), 570–578 (2004).
[CrossRef]

H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” J. Microelectromech. Syst.5(4), 231–237 (1996).
[CrossRef]

Veladi, H.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng.14(12), 1700–1710 (2004).
[CrossRef]

Wang, F.

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng.13(3), 400–411 (2003).
[CrossRef]

Weible, K. J.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Wu, C.-Y.

C. Lee, Y.-S. Lin, Y.-J. Lai, M. H. Tasi, C. Chen, and C.-Y. Wu, “3-V driven pop-up micromirror for reflecting light toward out-of-plane direction for VOA applications,” IEEE Photon. Technol. Lett.16(4), 1044–1046 (2004).
[CrossRef]

Wu, L.

Wu, M. C.

Xiang, W.

C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009).
[CrossRef]

Xie, H.

Xie, J.

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng.21(7), 075001 (2011).
[CrossRef]

Yang, B.

B. Yang, C. Lee, W. L. Kee, and S. P. Lim, “Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms,” J. Micro/Nanolith. MEMS MOEMS9, 023002 (2010).

C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009).
[CrossRef]

Yang, Y.-J.

Y.-J. Yang, B.-T. Liao, and W.-C. Kuo, “A novel 2 × 2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng.17(5), 875–882 (2007).
[CrossRef]

Yee, Y.

T.-S. Lim, C.-H. Ji, C.-H. Oh, H. Kwon, Y. Yee, and J. U. Bu, “Electrostatic MEMS variable optical attenuator with rotating folded micromirror,” IEEE J. Sel. Top. Quantum Electron.10(3), 558–562 (2004).
[CrossRef]

Yeh, J. A.

C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith. MEMS MOEMS7, 021003 (2008).

J. A. Yeh, S.-S. Jiang, and C. Lee, “MOEMS variable optical attenuators using rotary comb drive actuators,” IEEE Photon. Technol. Lett.18(10), 1170–1172 (2006).
[CrossRef]

C. Chen, C. Lee, and J. A. Yeh, “Retro-reflection type MOEMS VOA,” IEEE Photon. Technol. Lett.16(10), 2290–2292 (2004).
[CrossRef]

Yoon, E.

I. J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces,” IEEE Trans. Microw. Theory Tech.53(7), 2450–2457 (2005).
[CrossRef]

Yu, A.

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng.21(7), 075001 (2011).
[CrossRef]

Yu, A. B.

X. M. Zhang, A. Q. Liu, H. Cai, A. B. Yu, and C. Lu, “Retro-Axial VOA using parabolic mirror pair,” IEEE Photon. Technol. Lett.19(9), 692–694 (2007).
[CrossRef]

Zappe, H.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng.21(12), 125027 (2011).
[CrossRef]

Zhang, X. M.

X. M. Zhang, A. Q. Liu, H. Cai, A. B. Yu, and C. Lu, “Retro-Axial VOA using parabolic mirror pair,” IEEE Photon. Technol. Lett.19(9), 692–694 (2007).
[CrossRef]

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
[CrossRef]

H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, and E. H. Khoo, “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photon. Technol. Lett.17(2), 402–404 (2005).
[CrossRef]

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng.13(3), 400–411 (2003).
[CrossRef]

Zickar, M.

W. Sun, W. Noell, M. Zickar, M. J. Mughal, F. Perez, N. A. Riza, and N. F. de Rooij, “Design, simulation, fabrication, and characterization of a digital variable optical attenuator,” J. Microelectromech. Syst.15(5), 1190–1200 (2006).
[CrossRef]

Zou, H.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng.14(12), 1700–1710 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (5)

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron.5(1), 18–25 (1999).
[CrossRef]

T.-S. Lim, C.-H. Ji, C.-H. Oh, H. Kwon, Y. Yee, and J. U. Bu, “Electrostatic MEMS variable optical attenuator with rotating folded micromirror,” IEEE J. Sel. Top. Quantum Electron.10(3), 558–562 (2004).
[CrossRef]

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron.10(3), 570–578 (2004).
[CrossRef]

C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

X. M. Zhang, A. Q. Liu, H. Cai, A. B. Yu, and C. Lu, “Retro-Axial VOA using parabolic mirror pair,” IEEE Photon. Technol. Lett.19(9), 692–694 (2007).
[CrossRef]

C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett.11(2), 233–235 (1999).
[CrossRef]

C. Lee, Y.-S. Lin, Y.-J. Lai, M. H. Tasi, C. Chen, and C.-Y. Wu, “3-V driven pop-up micromirror for reflecting light toward out-of-plane direction for VOA applications,” IEEE Photon. Technol. Lett.16(4), 1044–1046 (2004).
[CrossRef]

H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, and E. H. Khoo, “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photon. Technol. Lett.17(2), 402–404 (2005).
[CrossRef]

J. A. Yeh, S.-S. Jiang, and C. Lee, “MOEMS variable optical attenuators using rotary comb drive actuators,” IEEE Photon. Technol. Lett.18(10), 1170–1172 (2006).
[CrossRef]

C. Chen, C. Lee, and J. A. Yeh, “Retro-reflection type MOEMS VOA,” IEEE Photon. Technol. Lett.16(10), 2290–2292 (2004).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

I. J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces,” IEEE Trans. Microw. Theory Tech.53(7), 2450–2457 (2005).
[CrossRef]

J. Lightwave Technol. (2)

J. Micro/Nanolith. MEMS MOEMS (2)

C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith. MEMS MOEMS7, 021003 (2008).

B. Yang, C. Lee, W. L. Kee, and S. P. Lim, “Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms,” J. Micro/Nanolith. MEMS MOEMS9, 023002 (2010).

J. Microelectromech. Syst. (3)

W. Sun, W. Noell, M. Zickar, M. J. Mughal, F. Perez, N. A. Riza, and N. F. de Rooij, “Design, simulation, fabrication, and characterization of a digital variable optical attenuator,” J. Microelectromech. Syst.15(5), 1190–1200 (2006).
[CrossRef]

K. H. Koh, C. Lee, and T. Kobayashi, “A piezoelectric-driven three-dimensional MEMS VOA using attenuation mechanism with combination of rotational and translational effects,” J. Microelectromech. Syst.19(6), 1370–1379 (2010).
[CrossRef]

H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” J. Microelectromech. Syst.5(4), 231–237 (1996).
[CrossRef]

J. Micromech. Microeng. (7)

Y.-J. Yang, B.-T. Liao, and W.-C. Kuo, “A novel 2 × 2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng.17(5), 875–882 (2007).
[CrossRef]

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
[CrossRef]

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng.21(7), 075001 (2011).
[CrossRef]

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng.13(3), 400–411 (2003).
[CrossRef]

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng.14(12), 1700–1710 (2004).
[CrossRef]

Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng.18(11), 115016 (2008).
[CrossRef]

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng.21(12), 125027 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Sens. Actuators A Phys. (2)

H.-T. Hsieh, C.-H. Li, and G.-D. J. Su, “Amorphous fluoropolymer micromembrane for variable optical attenuation,” Sens. Actuators A Phys.168(1), 172–178 (2011).
[CrossRef]

K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys.162(2), 336–347 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic diagram showing the (a) ET actuation mechanism where ET actuators 1 and 2 are biased and heated up, (b) ET attenuation principle, (b) EM actuation mechanism in the presence of an external permanent magnetic field and current flowing in the coils embedded in the frame, and (d) EM attenuation principle.

Fig. 2
Fig. 2

(a) Schematic diagram illustrating the proposed ET bimorph actuator for two designs A and B. (b) Simulated plot of optical deflection angle versus dc voltage applied to ET actuators 1 and 2. Results are obtained from ANSYS simulation software.

Fig. 3
Fig. 3

Microfabrication process flow of the VOA device.

Fig. 4
Fig. 4

(a) Photo showing the VOA device packaged in a dual inline package. Optical micrographs showing the (b) Al windings of the ET actuator for design A, (c) Al windings of the ET actuator for design B, and (d) EM coils embedded in the frame. (e) SEM photo illustrating the various microstructures of the VOA device for design B.

Fig. 5
Fig. 5

(a) Schematic diagram of the optical measurement setup conducted on an anti-vibration optical bench. (b) A zoom-in view of the DUT region where the dual fiber collimator is aligned perpendicular to the mirror surface before applying bias to the actuators.

Fig. 6
Fig. 6

White light interferometer measurement of the surface roughness for the aluminum coated mirror.

Fig. 7
Fig. 7

Measured I-V curves of (a) ET actuators, and (b) EM coils for designs A and B.

Fig. 8
Fig. 8

Measured dc response during (a) ET actuation, and (b) EM actuation for designs A and B.

Fig. 9
Fig. 9

Measured attenuation-bias response during (a) ET actuation, and (b) EM actuation for designs A and B.

Fig. 10
Fig. 10

Measured attenuation-bias response curve during hybrid attenuation scheme for design B where both ET and EM actuators are biased simultaneously.

Tables (3)

Tables Icon

Table 1 Thermo-mechanical Properties of Materials used for ET Actuator Simulation in ANSYS

Tables Icon

Table 2 Structural Parameters of the Two MEMS VOA Designs

Tables Icon

Table 3 VOA Performance of the Two Fabricated Designs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F= L Idl×B
T=iB m=0 N1 (b+2mΔL)(a+2mΔL)

Metrics