Abstract

A mechanism for white luminescence of Ag nanoclusters dispersed in oxyfluoride glass host has been revealed by studying a temperature dependence of its polarization memory. The spectral dependence of the polarization memory indicates the presence of a variety of Ag nanoclusters, particularly emitting in the blue, green and red. Temperature activated intercluster energy transfer has been found responsible for white luminescence. The means for increasing luminescence quantum yield have been suggested. This efficient white luminescence may be used in highly demanded devices, such as luminescent lamps, displays, color phosphors for LEDs, photovoltaic devices based on down shifting of solar spectrum.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Díez and R. H. A. Ras, “Fluorescent silver nanoclusters,” Nanoscale3(5), 1963–1970 (2011).
    [CrossRef] [PubMed]
  2. S. Choi, R. M. Dickson, and J. Yu, “Developing luminescent silver nanodots for biological applications,” Chem. Soc. Rev.41(5), 1867–1891 (2012).
    [CrossRef] [PubMed]
  3. J. Zheng, P. R. Nicovich, and R. M. Dickson, “Highly fluorescent noble-metal quantum dots,” Annu. Rev. Phys. Chem.58(1), 409–431 (2007).
    [CrossRef] [PubMed]
  4. I. Rabin, W. Schulze, and G. J. J. Ertl, “Light emission during the agglomeration of silver clusters in noble gas matrices,” Chem. Phys.108, 5137–5142 (1998).
  5. L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated Fluorescence from Individual Silver Nanoclusters,” Science291(5501), 103–106 (2001).
    [CrossRef] [PubMed]
  6. L. Konig, I. Rabin, W. Schulze, and G. J. Ertl, “Chemiluminescence in the Agglomeration of Metal Clusters,” Science274(5291), 1353–1354 (1996).
    [CrossRef] [PubMed]
  7. J. Sharma, H.-C. Yeh, H. Yoo, J. H. Werner, and J. S. Martinez, “A complementary palette of fluorescent silver nanoclusters,” Chem. Commun. (Camb.)46(19), 3280–3282 (2010).
    [CrossRef] [PubMed]
  8. C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J. K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, and W. H. J. Chang, “Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges,” Med. Biol. Eng.29, 276–283 (2009).
  9. N. T. Cuong, V. K. Tikhomirov, L. F. Chibotaru, A. Stesmans, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Experiment and theoretical modeling of the luminescence of silver nanoclusters dispersed in oxyfluoride glass,” J. Chem. Phys.136(17), 174108 (2012).
    [CrossRef] [PubMed]
  10. V. K. Tikhomirov, V. D. Rodríguez, A. Kuznetsov, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters,” Opt. Express18(21), 22032–22040 (2010).
    [CrossRef] [PubMed]
  11. J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express20(12), 13582–13591 (2012).
    [CrossRef] [PubMed]
  12. A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. Express2, 723–734 (2012).
    [CrossRef]
  13. V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
    [CrossRef]
  14. F. Meier and B. P. Zakharchenya, Optical Orientation Modern Problems in Condensed Matter Sciences, F. Meier, and B. P. Zakharchenya Eds. (Vol. 8; North-Holland, Amsterdam, 1984).
  15. V. K. Tikhomirov, A. B. Seddon, M. Ferrari, M. Montagna, L. F. Santos, and R. M. Almeida, “The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering,” Europhys. Lett.64(4), 529–535 (2003).
    [CrossRef]
  16. Web site of International Commission on Illumination. CIE (1931, 2°) color matching functions, http://www.CIE.co.at/index.php/LEFTMENUE/index.php?i_ca_id=298 .

2012 (4)

2011 (1)

I. Díez and R. H. A. Ras, “Fluorescent silver nanoclusters,” Nanoscale3(5), 1963–1970 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (1)

C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J. K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, and W. H. J. Chang, “Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges,” Med. Biol. Eng.29, 276–283 (2009).

2007 (1)

J. Zheng, P. R. Nicovich, and R. M. Dickson, “Highly fluorescent noble-metal quantum dots,” Annu. Rev. Phys. Chem.58(1), 409–431 (2007).
[CrossRef] [PubMed]

2003 (1)

V. K. Tikhomirov, A. B. Seddon, M. Ferrari, M. Montagna, L. F. Santos, and R. M. Almeida, “The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering,” Europhys. Lett.64(4), 529–535 (2003).
[CrossRef]

2002 (1)

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

2001 (1)

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated Fluorescence from Individual Silver Nanoclusters,” Science291(5501), 103–106 (2001).
[CrossRef] [PubMed]

1998 (1)

I. Rabin, W. Schulze, and G. J. J. Ertl, “Light emission during the agglomeration of silver clusters in noble gas matrices,” Chem. Phys.108, 5137–5142 (1998).

1996 (1)

L. Konig, I. Rabin, W. Schulze, and G. J. Ertl, “Chemiluminescence in the Agglomeration of Metal Clusters,” Science274(5291), 1353–1354 (1996).
[CrossRef] [PubMed]

Almeida, R. M.

V. K. Tikhomirov, A. B. Seddon, M. Ferrari, M. Montagna, L. F. Santos, and R. M. Almeida, “The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering,” Europhys. Lett.64(4), 529–535 (2003).
[CrossRef]

Bartko, A. P.

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated Fluorescence from Individual Silver Nanoclusters,” Science291(5501), 103–106 (2001).
[CrossRef] [PubMed]

Beggiora, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Chan, W.-H.

C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J. K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, and W. H. J. Chang, “Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges,” Med. Biol. Eng.29, 276–283 (2009).

Chang, W. H. J.

C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J. K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, and W. H. J. Chang, “Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges,” Med. Biol. Eng.29, 276–283 (2009).

Chibotaru, L. F.

Choi, S.

S. Choi, R. M. Dickson, and J. Yu, “Developing luminescent silver nanodots for biological applications,” Chem. Soc. Rev.41(5), 1867–1891 (2012).
[CrossRef] [PubMed]

Cuong, N. T.

Dickson, R. M.

S. Choi, R. M. Dickson, and J. Yu, “Developing luminescent silver nanodots for biological applications,” Chem. Soc. Rev.41(5), 1867–1891 (2012).
[CrossRef] [PubMed]

J. Zheng, P. R. Nicovich, and R. M. Dickson, “Highly fluorescent noble-metal quantum dots,” Annu. Rev. Phys. Chem.58(1), 409–431 (2007).
[CrossRef] [PubMed]

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated Fluorescence from Individual Silver Nanoclusters,” Science291(5501), 103–106 (2001).
[CrossRef] [PubMed]

Díez, I.

I. Díez and R. H. A. Ras, “Fluorescent silver nanoclusters,” Nanoscale3(5), 1963–1970 (2011).
[CrossRef] [PubMed]

Ertl, G. J.

L. Konig, I. Rabin, W. Schulze, and G. J. Ertl, “Chemiluminescence in the Agglomeration of Metal Clusters,” Science274(5291), 1353–1354 (1996).
[CrossRef] [PubMed]

Ertl, G. J. J.

I. Rabin, W. Schulze, and G. J. J. Ertl, “Light emission during the agglomeration of silver clusters in noble gas matrices,” Chem. Phys.108, 5137–5142 (1998).

Ferrari, M.

V. K. Tikhomirov, A. B. Seddon, M. Ferrari, M. Montagna, L. F. Santos, and R. M. Almeida, “The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering,” Europhys. Lett.64(4), 529–535 (2003).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Furniss, D.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Hsieh, J.-T.

C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J. K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, and W. H. J. Chang, “Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges,” Med. Biol. Eng.29, 276–283 (2009).

Jivanescu, M.

Kirilenko, D.

Konig, L.

L. Konig, I. Rabin, W. Schulze, and G. J. Ertl, “Chemiluminescence in the Agglomeration of Metal Clusters,” Science274(5291), 1353–1354 (1996).
[CrossRef] [PubMed]

Kuznetsov, A.

Kuznetsov, A. S.

Lee, C.-H.

C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J. K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, and W. H. J. Chang, “Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges,” Med. Biol. Eng.29, 276–283 (2009).

Li, J. K.

C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J. K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, and W. H. J. Chang, “Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges,” Med. Biol. Eng.29, 276–283 (2009).

Lin, C.-A. J.

C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J. K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, and W. H. J. Chang, “Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges,” Med. Biol. Eng.29, 276–283 (2009).

Martinez, J. S.

J. Sharma, H.-C. Yeh, H. Yoo, J. H. Werner, and J. S. Martinez, “A complementary palette of fluorescent silver nanoclusters,” Chem. Commun. (Camb.)46(19), 3280–3282 (2010).
[CrossRef] [PubMed]

Montagna, M.

V. K. Tikhomirov, A. B. Seddon, M. Ferrari, M. Montagna, L. F. Santos, and R. M. Almeida, “The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering,” Europhys. Lett.64(4), 529–535 (2003).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Moshchalkov, V. V.

Nguyen, M. T.

N. T. Cuong, V. K. Tikhomirov, L. F. Chibotaru, A. Stesmans, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Experiment and theoretical modeling of the luminescence of silver nanoclusters dispersed in oxyfluoride glass,” J. Chem. Phys.136(17), 174108 (2012).
[CrossRef] [PubMed]

J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express20(12), 13582–13591 (2012).
[CrossRef] [PubMed]

Nicovich, P. R.

J. Zheng, P. R. Nicovich, and R. M. Dickson, “Highly fluorescent noble-metal quantum dots,” Annu. Rev. Phys. Chem.58(1), 409–431 (2007).
[CrossRef] [PubMed]

Peyser, L. A.

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated Fluorescence from Individual Silver Nanoclusters,” Science291(5501), 103–106 (2001).
[CrossRef] [PubMed]

Rabin, I.

I. Rabin, W. Schulze, and G. J. J. Ertl, “Light emission during the agglomeration of silver clusters in noble gas matrices,” Chem. Phys.108, 5137–5142 (1998).

L. Konig, I. Rabin, W. Schulze, and G. J. Ertl, “Chemiluminescence in the Agglomeration of Metal Clusters,” Science274(5291), 1353–1354 (1996).
[CrossRef] [PubMed]

Ras, R. H. A.

I. Díez and R. H. A. Ras, “Fluorescent silver nanoclusters,” Nanoscale3(5), 1963–1970 (2011).
[CrossRef] [PubMed]

Reaney, I. M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Rodríguez, V. D.

Rolli, R.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Santos, L. F.

V. K. Tikhomirov, A. B. Seddon, M. Ferrari, M. Montagna, L. F. Santos, and R. M. Almeida, “The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering,” Europhys. Lett.64(4), 529–535 (2003).
[CrossRef]

Schulze, W.

I. Rabin, W. Schulze, and G. J. J. Ertl, “Light emission during the agglomeration of silver clusters in noble gas matrices,” Chem. Phys.108, 5137–5142 (1998).

L. Konig, I. Rabin, W. Schulze, and G. J. Ertl, “Chemiluminescence in the Agglomeration of Metal Clusters,” Science274(5291), 1353–1354 (1996).
[CrossRef] [PubMed]

Seddon, A. B.

V. K. Tikhomirov, A. B. Seddon, M. Ferrari, M. Montagna, L. F. Santos, and R. M. Almeida, “The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering,” Europhys. Lett.64(4), 529–535 (2003).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Sharma, J.

J. Sharma, H.-C. Yeh, H. Yoo, J. H. Werner, and J. S. Martinez, “A complementary palette of fluorescent silver nanoclusters,” Chem. Commun. (Camb.)46(19), 3280–3282 (2010).
[CrossRef] [PubMed]

Shen, J.-L.

C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J. K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, and W. H. J. Chang, “Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges,” Med. Biol. Eng.29, 276–283 (2009).

Stesmans, A.

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. Express2, 723–734 (2012).
[CrossRef]

N. T. Cuong, V. K. Tikhomirov, L. F. Chibotaru, A. Stesmans, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Experiment and theoretical modeling of the luminescence of silver nanoclusters dispersed in oxyfluoride glass,” J. Chem. Phys.136(17), 174108 (2012).
[CrossRef] [PubMed]

Tikhomirov, V. K.

N. T. Cuong, V. K. Tikhomirov, L. F. Chibotaru, A. Stesmans, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Experiment and theoretical modeling of the luminescence of silver nanoclusters dispersed in oxyfluoride glass,” J. Chem. Phys.136(17), 174108 (2012).
[CrossRef] [PubMed]

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. Express2, 723–734 (2012).
[CrossRef]

J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express20(12), 13582–13591 (2012).
[CrossRef] [PubMed]

V. K. Tikhomirov, V. D. Rodríguez, A. Kuznetsov, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters,” Opt. Express18(21), 22032–22040 (2010).
[CrossRef] [PubMed]

V. K. Tikhomirov, A. B. Seddon, M. Ferrari, M. Montagna, L. F. Santos, and R. M. Almeida, “The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering,” Europhys. Lett.64(4), 529–535 (2003).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Van Tendeloo, G.

Velázquez, J. J.

Vinson, A. E.

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated Fluorescence from Individual Silver Nanoclusters,” Science291(5501), 103–106 (2001).
[CrossRef] [PubMed]

Wang, H.-H.

C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J. K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, and W. H. J. Chang, “Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges,” Med. Biol. Eng.29, 276–283 (2009).

Werner, J. H.

J. Sharma, H.-C. Yeh, H. Yoo, J. H. Werner, and J. S. Martinez, “A complementary palette of fluorescent silver nanoclusters,” Chem. Commun. (Camb.)46(19), 3280–3282 (2010).
[CrossRef] [PubMed]

Yeh, H.-C.

J. Sharma, H.-C. Yeh, H. Yoo, J. H. Werner, and J. S. Martinez, “A complementary palette of fluorescent silver nanoclusters,” Chem. Commun. (Camb.)46(19), 3280–3282 (2010).
[CrossRef] [PubMed]

Yeh, H.-I.

C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J. K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, and W. H. J. Chang, “Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges,” Med. Biol. Eng.29, 276–283 (2009).

Yoo, H.

J. Sharma, H.-C. Yeh, H. Yoo, J. H. Werner, and J. S. Martinez, “A complementary palette of fluorescent silver nanoclusters,” Chem. Commun. (Camb.)46(19), 3280–3282 (2010).
[CrossRef] [PubMed]

Yu, J.

S. Choi, R. M. Dickson, and J. Yu, “Developing luminescent silver nanodots for biological applications,” Chem. Soc. Rev.41(5), 1867–1891 (2012).
[CrossRef] [PubMed]

Zheng, J.

J. Zheng, P. R. Nicovich, and R. M. Dickson, “Highly fluorescent noble-metal quantum dots,” Annu. Rev. Phys. Chem.58(1), 409–431 (2007).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

J. Zheng, P. R. Nicovich, and R. M. Dickson, “Highly fluorescent noble-metal quantum dots,” Annu. Rev. Phys. Chem.58(1), 409–431 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Chem. Commun. (Camb.) (1)

J. Sharma, H.-C. Yeh, H. Yoo, J. H. Werner, and J. S. Martinez, “A complementary palette of fluorescent silver nanoclusters,” Chem. Commun. (Camb.)46(19), 3280–3282 (2010).
[CrossRef] [PubMed]

Chem. Phys. (1)

I. Rabin, W. Schulze, and G. J. J. Ertl, “Light emission during the agglomeration of silver clusters in noble gas matrices,” Chem. Phys.108, 5137–5142 (1998).

Chem. Soc. Rev. (1)

S. Choi, R. M. Dickson, and J. Yu, “Developing luminescent silver nanodots for biological applications,” Chem. Soc. Rev.41(5), 1867–1891 (2012).
[CrossRef] [PubMed]

Europhys. Lett. (1)

V. K. Tikhomirov, A. B. Seddon, M. Ferrari, M. Montagna, L. F. Santos, and R. M. Almeida, “The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering,” Europhys. Lett.64(4), 529–535 (2003).
[CrossRef]

J. Chem. Phys. (1)

N. T. Cuong, V. K. Tikhomirov, L. F. Chibotaru, A. Stesmans, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Experiment and theoretical modeling of the luminescence of silver nanoclusters dispersed in oxyfluoride glass,” J. Chem. Phys.136(17), 174108 (2012).
[CrossRef] [PubMed]

Med. Biol. Eng. (1)

C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J. K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, and W. H. J. Chang, “Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges,” Med. Biol. Eng.29, 276–283 (2009).

Nanoscale (1)

I. Díez and R. H. A. Ras, “Fluorescent silver nanoclusters,” Nanoscale3(5), 1963–1970 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Mater. Express (1)

Science (2)

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated Fluorescence from Individual Silver Nanoclusters,” Science291(5501), 103–106 (2001).
[CrossRef] [PubMed]

L. Konig, I. Rabin, W. Schulze, and G. J. Ertl, “Chemiluminescence in the Agglomeration of Metal Clusters,” Science274(5291), 1353–1354 (1996).
[CrossRef] [PubMed]

Other (2)

Web site of International Commission on Illumination. CIE (1931, 2°) color matching functions, http://www.CIE.co.at/index.php/LEFTMENUE/index.php?i_ca_id=298 .

F. Meier and B. P. Zakharchenya, Optical Orientation Modern Problems in Condensed Matter Sciences, F. Meier, and B. P. Zakharchenya Eds. (Vol. 8; North-Holland, Amsterdam, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

CIE chromaticity diagram, based on 1931 (2°) color matching functions [16], for emission of Ag nanoclusters dispersed in a basic oxyfluoride glass at the room (open symbols) and 14 K (filled symbols) at indicated excitation wavelengths. The white area in the CIE diagram corresponds to a white light gamut. Insert shows a photo of white luminescence at 5 K and excitation at 350 nm by a Xe lamp.

Fig. 2
Fig. 2

(a) Emission spectra excited at 355 (blue curves) and 440 nm (green curves) at the room (solid lines) and 14 K (dashed lines) temperatures. (b) Spectral changes of luminescence with lowering temperature from the room temperature down to 14 K, represented by a respective ratio on Y-axis, when excited at the indicated wavelengths. The experiments were carried out with a basic glass.

Fig. 3
Fig. 3

(a,b,c) Spectra of polarization memory (PM) of luminescence at the room (red curves) and 14 K (blue curves) temperatures excited at 355 (a), 400 (b) and 435 (c) nm. (d) Spectra of PM of luminescence at the low temperature of 14 K excited at the indicated wavelengths. The experiments were carried out with a basic glass.

Fig. 4
Fig. 4

Three-dimensional configuration coordinate diagram (CCD) of proposed spatial arrangement of adjacent excited states of Ag nanoclusters emitting in the blue (blue hemisphere), green (green hemisphere) and red (red hemisphere). Two temperature activated energy transfer routes from the upper lying to the lower lying hemispheres/nanoclusters are indicated by dashed violet curved arrows. Absorption transitions are shown by solid straight up-headed arrows of the respective colors, and the emission transitions from the blue, green, red emitting Ag nanoclusters are shown by the blue, green and red color down-headed arrows, respectively. The projections of the hemispheres to the zero energy plane are indicated by the dashed ellipses, respectively. Orange wavy arrows show phonon assisted relaxation of Ag nanoclusters within the corresponding potential well. Shaded rectangles indicate barriers for the hops from the Blue to the Green and to the Red Ag nanoclusters according to the Route 1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PM= I || + I I || I

Metrics