Abstract

Plasmonics is a field in which the light matter interaction can be controlled at the nanoscale by patterning the material surface to achieve enhanced optical effects. Realisation of micron sized silicon based plasmonic devices will require efficient coupling of light from an optical fibre grating coupler into silicon compatible plasmonic waveguides. In this paper we have investigated a silicon based plasmonic coupler with a very short taper length, which confines and focuses light from a broad input fibre opening into a plasmonic waveguide at the apex of the structure. A simple transfer matrix model was also developed to analyse the transmission performance of the coupler with respect to its key physical parameters. The proposed plasmonic coupler was optimised with respect to its different structural parameters using finite element simulations. A maximum coupling efficiency of 72% for light coupling from a 6.2μm wide input opening into a 20nm slit width was predicted. The simulated result also predicted an insertion loss of ≈ 2.0dB for light coupling into a 300nm single mode SOI waveguide from a plasmonic structure with a 10.4μm input opening width and a taper length of only 3.15μm. Furthermore, the application of the optimised plasmonic coupler as a splitter was investigated, in which the structure simultaneously splits and couples light with a predicted coupling efficiency of ≈ 37 % (or a total coupling efficiency of 73%) from a 6.22μm input opening into two 50nm wide plasmonic waveguides.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
    [CrossRef] [PubMed]
  2. T. Ebssen and C. Genet, “Light in tiny holes,” Nature445, 39–46 (2007).
    [CrossRef]
  3. J. Dionne, L. Sweatlock, M. Sheldon, A. Alivisatos, and H. Atwater, “Silicon based plasmonics for on-chip photonics,” IEEE J. of Sel. Top. in Quantum Electron.16, 295–306 (2010).
    [CrossRef]
  4. O. Janssen, H. Urbach, and G. Hooft, “On the phase of plasmons excited by slits in a metal film,” Opt. Express14, 11823–11832 (2006).
    [CrossRef] [PubMed]
  5. L. H. Thio T, T. Ebbesen, K. Pellerin, G. Lewen, A. Nahata, and R. Limke, “Giant optical transmission of subwavelength apertures: physics and applications,” Nanotech.13, 429–432 (2002).
    [CrossRef]
  6. F. Vidal, H. Lezec, T. Ebbesen, and L. Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
    [CrossRef]
  7. T. Thio, K. Pellerin, and R. Linke, “Enhanced ligh transmission through single subwavelength aperture,” Opt. Lett.26, 1972–1974 (2001).
    [CrossRef]
  8. S. Palacios, O. Mahboub, G. Vidal, L. Moreno, S. Rodrigi, C. Genet, and T. Ebbesen, “Mechanisms for extraordinary transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011).
    [CrossRef]
  9. H. Lezec, A. Degiron, R. Linke, M. Moreno, F. Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
    [CrossRef] [PubMed]
  10. H. Ghaemi, T. Thio, G. D.E, T. Ebbesen, and H. Lezec, “Surface plasmons enhanced optical transmission through subwavelength holes,” Phys. Rev. B58, 6779–6782 (1998).
    [CrossRef]
  11. F. Vidal, H. Lezec, T. Ebbesen, and M. Moreno, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
    [CrossRef]
  12. T. Sondergaard, S. Bozhevolnyi, S. Novikov, J. Beermann, E. Devaux, and Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10, 3123–3128 (2010).
    [CrossRef] [PubMed]
  13. O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimised using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007).
    [CrossRef] [PubMed]
  14. L. Yin, V.-V. V.K, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
    [CrossRef] [PubMed]
  15. H. Lezec and T. Thio, “Diffracted evanescent model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12, 3629–3651 (2004).
    [CrossRef] [PubMed]
  16. G. Li and A. Xu, “Phase shifts of plasmons excited by slits in a metal film illuminated by oblique incident TM plane wave,” Proc. SPIE7135, 71350T–9 (2008).
    [CrossRef]
  17. L. G. Yuan, C. Lin, X. Feng, and X. An-Shi, “Plasmonic corrugated horn structure for optical transmission enhancement,” Chin. Phys. Lett.26, 124205 (2009).
    [CrossRef]
  18. C. Mentzer and L. Peters, “Pattern analysis of corrugated horn antennas,” IEEE Tran. on Ant. and Prop.24, 304–309 (1976).
    [CrossRef]
  19. S. Sederberg, V. Van, and A. Ellezabi, “Monolithic integration of plasmonic waveguides into complimentary metal-oxide-semiconductor and photonic compatible platform,” Appl. Phys. Lett.96, 121101 (2010).
    [CrossRef]
  20. Comsol Multiphysics, www.comsol.com , 3rd edition.
  21. P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  22. X. Huang and M. Brongersma, “Rapid computation of light scattering from aperiodic plasmonic structures,” Phys. Rev. B84, 245120 (2011).
    [CrossRef]
  23. M. Kuttge, F. Garcia, and A. Polamn, “How grooves reflect and confine surface plasmon polaritons,” Opt. Express17, 10385–10392 (2009).
    [CrossRef] [PubMed]
  24. J. Galan, P. Sanchis, B. Sanchez, and J. Marti, “Polarisation insensitive fibre to SOI waveguide experimental coupling technique integrated with a v-groove structure,” Group IV Photonics, 4th IEEE International Conference, 1–3 (2007).
    [CrossRef]
  25. H. Sun, A. Chen, A. Szep, and L. R. Dalton, “Efficient fibre coupler for vertical silicon slot waveguides,” Opt. Express17, 22571–22577 (2009).
    [CrossRef]
  26. K. Shiraishi, M. Kagaya, K. Muro, H. Yoda, Y. Kogami, and C. Tsai, “Single mode fibre with a plano-convex silicon microlens for integrated butt-coupling scheme,” Opt. Express47, 6345–6349 (2008).
  27. S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express18, 27802–27819 (2010).
    [CrossRef]
  28. R. Thomas, Z. Ikonic, and R. Kelsall, “Electro-optic metal-insulator-semiconductor-insulator-metal Mach-Zehnder plasmonic modulator,” Phot. and Nanostructres10, 183–189 (2011).
    [CrossRef]

2011 (3)

S. Palacios, O. Mahboub, G. Vidal, L. Moreno, S. Rodrigi, C. Genet, and T. Ebbesen, “Mechanisms for extraordinary transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011).
[CrossRef]

X. Huang and M. Brongersma, “Rapid computation of light scattering from aperiodic plasmonic structures,” Phys. Rev. B84, 245120 (2011).
[CrossRef]

R. Thomas, Z. Ikonic, and R. Kelsall, “Electro-optic metal-insulator-semiconductor-insulator-metal Mach-Zehnder plasmonic modulator,” Phot. and Nanostructres10, 183–189 (2011).
[CrossRef]

2010 (5)

S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express18, 27802–27819 (2010).
[CrossRef]

J. Dionne, L. Sweatlock, M. Sheldon, A. Alivisatos, and H. Atwater, “Silicon based plasmonics for on-chip photonics,” IEEE J. of Sel. Top. in Quantum Electron.16, 295–306 (2010).
[CrossRef]

F. Vidal, H. Lezec, T. Ebbesen, and M. Moreno, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

T. Sondergaard, S. Bozhevolnyi, S. Novikov, J. Beermann, E. Devaux, and Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10, 3123–3128 (2010).
[CrossRef] [PubMed]

S. Sederberg, V. Van, and A. Ellezabi, “Monolithic integration of plasmonic waveguides into complimentary metal-oxide-semiconductor and photonic compatible platform,” Appl. Phys. Lett.96, 121101 (2010).
[CrossRef]

2009 (3)

2008 (2)

K. Shiraishi, M. Kagaya, K. Muro, H. Yoda, Y. Kogami, and C. Tsai, “Single mode fibre with a plano-convex silicon microlens for integrated butt-coupling scheme,” Opt. Express47, 6345–6349 (2008).

G. Li and A. Xu, “Phase shifts of plasmons excited by slits in a metal film illuminated by oblique incident TM plane wave,” Proc. SPIE7135, 71350T–9 (2008).
[CrossRef]

2007 (2)

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimised using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007).
[CrossRef] [PubMed]

T. Ebssen and C. Genet, “Light in tiny holes,” Nature445, 39–46 (2007).
[CrossRef]

2006 (2)

2005 (1)

L. Yin, V.-V. V.K, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

F. Vidal, H. Lezec, T. Ebbesen, and L. Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
[CrossRef]

2002 (2)

H. Lezec, A. Degiron, R. Linke, M. Moreno, F. Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

L. H. Thio T, T. Ebbesen, K. Pellerin, G. Lewen, A. Nahata, and R. Limke, “Giant optical transmission of subwavelength apertures: physics and applications,” Nanotech.13, 429–432 (2002).
[CrossRef]

2001 (1)

1998 (1)

H. Ghaemi, T. Thio, G. D.E, T. Ebbesen, and H. Lezec, “Surface plasmons enhanced optical transmission through subwavelength holes,” Phys. Rev. B58, 6779–6782 (1998).
[CrossRef]

1976 (1)

C. Mentzer and L. Peters, “Pattern analysis of corrugated horn antennas,” IEEE Tran. on Ant. and Prop.24, 304–309 (1976).
[CrossRef]

1972 (1)

P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Alivisatos, A.

J. Dionne, L. Sweatlock, M. Sheldon, A. Alivisatos, and H. Atwater, “Silicon based plasmonics for on-chip photonics,” IEEE J. of Sel. Top. in Quantum Electron.16, 295–306 (2010).
[CrossRef]

An-Shi, X.

L. G. Yuan, C. Lin, X. Feng, and X. An-Shi, “Plasmonic corrugated horn structure for optical transmission enhancement,” Chin. Phys. Lett.26, 124205 (2009).
[CrossRef]

Atwater, H.

J. Dionne, L. Sweatlock, M. Sheldon, A. Alivisatos, and H. Atwater, “Silicon based plasmonics for on-chip photonics,” IEEE J. of Sel. Top. in Quantum Electron.16, 295–306 (2010).
[CrossRef]

Beermann, J.

T. Sondergaard, S. Bozhevolnyi, S. Novikov, J. Beermann, E. Devaux, and Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10, 3123–3128 (2010).
[CrossRef] [PubMed]

Bozhevolnyi, S.

T. Sondergaard, S. Bozhevolnyi, S. Novikov, J. Beermann, E. Devaux, and Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10, 3123–3128 (2010).
[CrossRef] [PubMed]

Brongersma, M.

X. Huang and M. Brongersma, “Rapid computation of light scattering from aperiodic plasmonic structures,” Phys. Rev. B84, 245120 (2011).
[CrossRef]

Brown, D.

L. Yin, V.-V. V.K, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Chen, A.

Christy, R.

P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

D.E, G.

H. Ghaemi, T. Thio, G. D.E, T. Ebbesen, and H. Lezec, “Surface plasmons enhanced optical transmission through subwavelength holes,” Phys. Rev. B58, 6779–6782 (1998).
[CrossRef]

Dalton, L. R.

Degiron, A.

H. Lezec, A. Degiron, R. Linke, M. Moreno, F. Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

T. Sondergaard, S. Bozhevolnyi, S. Novikov, J. Beermann, E. Devaux, and Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10, 3123–3128 (2010).
[CrossRef] [PubMed]

Dionne, J.

J. Dionne, L. Sweatlock, M. Sheldon, A. Alivisatos, and H. Atwater, “Silicon based plasmonics for on-chip photonics,” IEEE J. of Sel. Top. in Quantum Electron.16, 295–306 (2010).
[CrossRef]

Ebbesen,

T. Sondergaard, S. Bozhevolnyi, S. Novikov, J. Beermann, E. Devaux, and Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10, 3123–3128 (2010).
[CrossRef] [PubMed]

Ebbesen, T.

S. Palacios, O. Mahboub, G. Vidal, L. Moreno, S. Rodrigi, C. Genet, and T. Ebbesen, “Mechanisms for extraordinary transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011).
[CrossRef]

F. Vidal, H. Lezec, T. Ebbesen, and M. Moreno, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

F. Vidal, H. Lezec, T. Ebbesen, and L. Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
[CrossRef]

H. Lezec, A. Degiron, R. Linke, M. Moreno, F. Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

L. H. Thio T, T. Ebbesen, K. Pellerin, G. Lewen, A. Nahata, and R. Limke, “Giant optical transmission of subwavelength apertures: physics and applications,” Nanotech.13, 429–432 (2002).
[CrossRef]

H. Ghaemi, T. Thio, G. D.E, T. Ebbesen, and H. Lezec, “Surface plasmons enhanced optical transmission through subwavelength holes,” Phys. Rev. B58, 6779–6782 (1998).
[CrossRef]

Ebssen, T.

T. Ebssen and C. Genet, “Light in tiny holes,” Nature445, 39–46 (2007).
[CrossRef]

Ellezabi, A.

S. Sederberg, V. Van, and A. Ellezabi, “Monolithic integration of plasmonic waveguides into complimentary metal-oxide-semiconductor and photonic compatible platform,” Appl. Phys. Lett.96, 121101 (2010).
[CrossRef]

Feng, X.

L. G. Yuan, C. Lin, X. Feng, and X. An-Shi, “Plasmonic corrugated horn structure for optical transmission enhancement,” Chin. Phys. Lett.26, 124205 (2009).
[CrossRef]

Galan, J.

J. Galan, P. Sanchis, B. Sanchez, and J. Marti, “Polarisation insensitive fibre to SOI waveguide experimental coupling technique integrated with a v-groove structure,” Group IV Photonics, 4th IEEE International Conference, 1–3 (2007).
[CrossRef]

Garcia, F.

Genet, C.

Ghaemi, H.

H. Ghaemi, T. Thio, G. D.E, T. Ebbesen, and H. Lezec, “Surface plasmons enhanced optical transmission through subwavelength holes,” Phys. Rev. B58, 6779–6782 (1998).
[CrossRef]

Hiller, J.

L. Yin, V.-V. V.K, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Hooft, G.

Hooft, G. W.

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimised using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007).
[CrossRef] [PubMed]

Hua, J.

L. Yin, V.-V. V.K, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Huang, X.

X. Huang and M. Brongersma, “Rapid computation of light scattering from aperiodic plasmonic structures,” Phys. Rev. B84, 245120 (2011).
[CrossRef]

Ikonic, Z.

R. Thomas, Z. Ikonic, and R. Kelsall, “Electro-optic metal-insulator-semiconductor-insulator-metal Mach-Zehnder plasmonic modulator,” Phot. and Nanostructres10, 183–189 (2011).
[CrossRef]

Janssen, O.

Janssen, O. T. A.

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimised using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007).
[CrossRef] [PubMed]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Kagaya, M.

K. Shiraishi, M. Kagaya, K. Muro, H. Yoda, Y. Kogami, and C. Tsai, “Single mode fibre with a plano-convex silicon microlens for integrated butt-coupling scheme,” Opt. Express47, 6345–6349 (2008).

Kelsall, R.

R. Thomas, Z. Ikonic, and R. Kelsall, “Electro-optic metal-insulator-semiconductor-insulator-metal Mach-Zehnder plasmonic modulator,” Phot. and Nanostructres10, 183–189 (2011).
[CrossRef]

Kimball, C.

L. Yin, V.-V. V.K, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Kogami, Y.

K. Shiraishi, M. Kagaya, K. Muro, H. Yoda, Y. Kogami, and C. Tsai, “Single mode fibre with a plano-convex silicon microlens for integrated butt-coupling scheme,” Opt. Express47, 6345–6349 (2008).

Kuttge, M.

Kwong, D. L.

Lewen, G.

L. H. Thio T, T. Ebbesen, K. Pellerin, G. Lewen, A. Nahata, and R. Limke, “Giant optical transmission of subwavelength apertures: physics and applications,” Nanotech.13, 429–432 (2002).
[CrossRef]

Lezec, H.

F. Vidal, H. Lezec, T. Ebbesen, and M. Moreno, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

H. Lezec and T. Thio, “Diffracted evanescent model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12, 3629–3651 (2004).
[CrossRef] [PubMed]

F. Vidal, H. Lezec, T. Ebbesen, and L. Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
[CrossRef]

H. Lezec, A. Degiron, R. Linke, M. Moreno, F. Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

H. Ghaemi, T. Thio, G. D.E, T. Ebbesen, and H. Lezec, “Surface plasmons enhanced optical transmission through subwavelength holes,” Phys. Rev. B58, 6779–6782 (1998).
[CrossRef]

Li, G.

G. Li and A. Xu, “Phase shifts of plasmons excited by slits in a metal film illuminated by oblique incident TM plane wave,” Proc. SPIE7135, 71350T–9 (2008).
[CrossRef]

Limke, R.

L. H. Thio T, T. Ebbesen, K. Pellerin, G. Lewen, A. Nahata, and R. Limke, “Giant optical transmission of subwavelength apertures: physics and applications,” Nanotech.13, 429–432 (2002).
[CrossRef]

Lin, C.

L. G. Yuan, C. Lin, X. Feng, and X. An-Shi, “Plasmonic corrugated horn structure for optical transmission enhancement,” Chin. Phys. Lett.26, 124205 (2009).
[CrossRef]

Linke, R.

H. Lezec, A. Degiron, R. Linke, M. Moreno, F. Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, K. Pellerin, and R. Linke, “Enhanced ligh transmission through single subwavelength aperture,” Opt. Lett.26, 1972–1974 (2001).
[CrossRef]

Lo, G. Q.

Mahboub, O.

Marti, J.

J. Galan, P. Sanchis, B. Sanchez, and J. Marti, “Polarisation insensitive fibre to SOI waveguide experimental coupling technique integrated with a v-groove structure,” Group IV Photonics, 4th IEEE International Conference, 1–3 (2007).
[CrossRef]

Mentzer, C.

C. Mentzer and L. Peters, “Pattern analysis of corrugated horn antennas,” IEEE Tran. on Ant. and Prop.24, 304–309 (1976).
[CrossRef]

Moreno, L.

S. Palacios, O. Mahboub, G. Vidal, L. Moreno, S. Rodrigi, C. Genet, and T. Ebbesen, “Mechanisms for extraordinary transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011).
[CrossRef]

F. Vidal, H. Lezec, T. Ebbesen, and L. Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
[CrossRef]

Moreno, M.

F. Vidal, H. Lezec, T. Ebbesen, and M. Moreno, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

H. Lezec, A. Degiron, R. Linke, M. Moreno, F. Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Muro, K.

K. Shiraishi, M. Kagaya, K. Muro, H. Yoda, Y. Kogami, and C. Tsai, “Single mode fibre with a plano-convex silicon microlens for integrated butt-coupling scheme,” Opt. Express47, 6345–6349 (2008).

Nahata, A.

L. H. Thio T, T. Ebbesen, K. Pellerin, G. Lewen, A. Nahata, and R. Limke, “Giant optical transmission of subwavelength apertures: physics and applications,” Nanotech.13, 429–432 (2002).
[CrossRef]

Novikov, S.

T. Sondergaard, S. Bozhevolnyi, S. Novikov, J. Beermann, E. Devaux, and Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10, 3123–3128 (2010).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

Palacios, S.

Pearson, J.

L. Yin, V.-V. V.K, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Pellerin, K.

L. H. Thio T, T. Ebbesen, K. Pellerin, G. Lewen, A. Nahata, and R. Limke, “Giant optical transmission of subwavelength apertures: physics and applications,” Nanotech.13, 429–432 (2002).
[CrossRef]

T. Thio, K. Pellerin, and R. Linke, “Enhanced ligh transmission through single subwavelength aperture,” Opt. Lett.26, 1972–1974 (2001).
[CrossRef]

Peters, L.

C. Mentzer and L. Peters, “Pattern analysis of corrugated horn antennas,” IEEE Tran. on Ant. and Prop.24, 304–309 (1976).
[CrossRef]

Polamn, A.

Rodrigi, S.

Sanchez, B.

J. Galan, P. Sanchis, B. Sanchez, and J. Marti, “Polarisation insensitive fibre to SOI waveguide experimental coupling technique integrated with a v-groove structure,” Group IV Photonics, 4th IEEE International Conference, 1–3 (2007).
[CrossRef]

Sanchis, P.

J. Galan, P. Sanchis, B. Sanchez, and J. Marti, “Polarisation insensitive fibre to SOI waveguide experimental coupling technique integrated with a v-groove structure,” Group IV Photonics, 4th IEEE International Conference, 1–3 (2007).
[CrossRef]

Sederberg, S.

S. Sederberg, V. Van, and A. Ellezabi, “Monolithic integration of plasmonic waveguides into complimentary metal-oxide-semiconductor and photonic compatible platform,” Appl. Phys. Lett.96, 121101 (2010).
[CrossRef]

Sheldon, M.

J. Dionne, L. Sweatlock, M. Sheldon, A. Alivisatos, and H. Atwater, “Silicon based plasmonics for on-chip photonics,” IEEE J. of Sel. Top. in Quantum Electron.16, 295–306 (2010).
[CrossRef]

Shiraishi, K.

K. Shiraishi, M. Kagaya, K. Muro, H. Yoda, Y. Kogami, and C. Tsai, “Single mode fibre with a plano-convex silicon microlens for integrated butt-coupling scheme,” Opt. Express47, 6345–6349 (2008).

Sondergaard, T.

T. Sondergaard, S. Bozhevolnyi, S. Novikov, J. Beermann, E. Devaux, and Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10, 3123–3128 (2010).
[CrossRef] [PubMed]

Sun, H.

Sweatlock, L.

J. Dionne, L. Sweatlock, M. Sheldon, A. Alivisatos, and H. Atwater, “Silicon based plasmonics for on-chip photonics,” IEEE J. of Sel. Top. in Quantum Electron.16, 295–306 (2010).
[CrossRef]

Szep, A.

Thio, T.

Thio T, L. H.

L. H. Thio T, T. Ebbesen, K. Pellerin, G. Lewen, A. Nahata, and R. Limke, “Giant optical transmission of subwavelength apertures: physics and applications,” Nanotech.13, 429–432 (2002).
[CrossRef]

Thomas, R.

R. Thomas, Z. Ikonic, and R. Kelsall, “Electro-optic metal-insulator-semiconductor-insulator-metal Mach-Zehnder plasmonic modulator,” Phot. and Nanostructres10, 183–189 (2011).
[CrossRef]

Tsai, C.

K. Shiraishi, M. Kagaya, K. Muro, H. Yoda, Y. Kogami, and C. Tsai, “Single mode fibre with a plano-convex silicon microlens for integrated butt-coupling scheme,” Opt. Express47, 6345–6349 (2008).

Urbach, H.

Urbach, H. P.

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimised using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007).
[CrossRef] [PubMed]

V.K, V.-V.

L. Yin, V.-V. V.K, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Van, V.

S. Sederberg, V. Van, and A. Ellezabi, “Monolithic integration of plasmonic waveguides into complimentary metal-oxide-semiconductor and photonic compatible platform,” Appl. Phys. Lett.96, 121101 (2010).
[CrossRef]

Vidal, F.

F. Vidal, H. Lezec, T. Ebbesen, and M. Moreno, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

F. Vidal, H. Lezec, T. Ebbesen, and L. Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
[CrossRef]

H. Lezec, A. Degiron, R. Linke, M. Moreno, F. Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Vidal, G.

Welp, U.

L. Yin, V.-V. V.K, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Xu, A.

G. Li and A. Xu, “Phase shifts of plasmons excited by slits in a metal film illuminated by oblique incident TM plane wave,” Proc. SPIE7135, 71350T–9 (2008).
[CrossRef]

Yin, L.

L. Yin, V.-V. V.K, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Yoda, H.

K. Shiraishi, M. Kagaya, K. Muro, H. Yoda, Y. Kogami, and C. Tsai, “Single mode fibre with a plano-convex silicon microlens for integrated butt-coupling scheme,” Opt. Express47, 6345–6349 (2008).

Yuan, L. G.

L. G. Yuan, C. Lin, X. Feng, and X. An-Shi, “Plasmonic corrugated horn structure for optical transmission enhancement,” Chin. Phys. Lett.26, 124205 (2009).
[CrossRef]

Zhu, S.

Appl. Phys. Lett. (1)

S. Sederberg, V. Van, and A. Ellezabi, “Monolithic integration of plasmonic waveguides into complimentary metal-oxide-semiconductor and photonic compatible platform,” Appl. Phys. Lett.96, 121101 (2010).
[CrossRef]

Chin. Phys. Lett. (1)

L. G. Yuan, C. Lin, X. Feng, and X. An-Shi, “Plasmonic corrugated horn structure for optical transmission enhancement,” Chin. Phys. Lett.26, 124205 (2009).
[CrossRef]

IEEE J. of Sel. Top. in Quantum Electron. (1)

J. Dionne, L. Sweatlock, M. Sheldon, A. Alivisatos, and H. Atwater, “Silicon based plasmonics for on-chip photonics,” IEEE J. of Sel. Top. in Quantum Electron.16, 295–306 (2010).
[CrossRef]

IEEE Tran. on Ant. and Prop. (1)

C. Mentzer and L. Peters, “Pattern analysis of corrugated horn antennas,” IEEE Tran. on Ant. and Prop.24, 304–309 (1976).
[CrossRef]

Nano Lett. (2)

L. Yin, V.-V. V.K, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

T. Sondergaard, S. Bozhevolnyi, S. Novikov, J. Beermann, E. Devaux, and Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10, 3123–3128 (2010).
[CrossRef] [PubMed]

Nanotech. (1)

L. H. Thio T, T. Ebbesen, K. Pellerin, G. Lewen, A. Nahata, and R. Limke, “Giant optical transmission of subwavelength apertures: physics and applications,” Nanotech.13, 429–432 (2002).
[CrossRef]

Nature (1)

T. Ebssen and C. Genet, “Light in tiny holes,” Nature445, 39–46 (2007).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Phot. and Nanostructres (1)

R. Thomas, Z. Ikonic, and R. Kelsall, “Electro-optic metal-insulator-semiconductor-insulator-metal Mach-Zehnder plasmonic modulator,” Phot. and Nanostructres10, 183–189 (2011).
[CrossRef]

Phys. Rev. B (3)

P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

X. Huang and M. Brongersma, “Rapid computation of light scattering from aperiodic plasmonic structures,” Phys. Rev. B84, 245120 (2011).
[CrossRef]

H. Ghaemi, T. Thio, G. D.E, T. Ebbesen, and H. Lezec, “Surface plasmons enhanced optical transmission through subwavelength holes,” Phys. Rev. B58, 6779–6782 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimised using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007).
[CrossRef] [PubMed]

F. Vidal, H. Lezec, T. Ebbesen, and L. Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
[CrossRef]

Proc. SPIE (1)

G. Li and A. Xu, “Phase shifts of plasmons excited by slits in a metal film illuminated by oblique incident TM plane wave,” Proc. SPIE7135, 71350T–9 (2008).
[CrossRef]

Rev. Mod. Phys. (1)

F. Vidal, H. Lezec, T. Ebbesen, and M. Moreno, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Science (2)

H. Lezec, A. Degiron, R. Linke, M. Moreno, F. Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

Other (2)

Comsol Multiphysics, www.comsol.com , 3rd edition.

J. Galan, P. Sanchis, B. Sanchez, and J. Marti, “Polarisation insensitive fibre to SOI waveguide experimental coupling technique integrated with a v-groove structure,” Group IV Photonics, 4th IEEE International Conference, 1–3 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1:
Fig. 1:

Plan view of the symmetrically corrugated silicon based plasmonic coupler.

Fig. 2:
Fig. 2:

Maximum power coupling efficiency to the narrow silicon slit as a function of Ngr.

Fig. 3:
Fig. 3:

(a) Maximum transmission coupling efficiency obtained in the narrow silicon slit for different Dgr using the FEEM (green diamonds) and TMM (brown triangles). (b) The SPP transmission and reflection coefficients obtained from a planar Si-metal structure comprising a single groove for different Dgr. (c) SPP transmission and reflection phase shifts for different Dgr. (d) Excitation efficiencies of SPPs at a single Si-metal groove, propagating forwards (CF) and backwards (CB) relative to the incident light direction. The inset at the top right shows a cross section of the structure used for these simulations: a planar Si-metal bilayer containing a single groove illuminated by an obliquely incident light beam.

Fig. 4:
Fig. 4:

Surface plasmon electric field profile (Ey) in a planar Si-metal structure comprising a single groove for (a) Dgr = 70nm and (b) Dgr = 200nm.

Fig. 5:
Fig. 5:

(a) Power coupling efficiency into the silicon slit as a function of Wgr. The error bars signify the variation in FEEM results with respect to the mesh definition in the simulation domain (this convention is also used in other figures). (b) Magnified view of the SPP electric field profile at Wgr= 0.56λspp.

Fig. 6:
Fig. 6:

Magnified views of the electric field (Ey) profile for (a) Wgr ≈ 0.35λspp and (b) Wgr ≈ 0.45λspp

Fig. 7:
Fig. 7:

(a) Effect of the slit to nearest groove distance (dsg) on the maximum power coupling efficiency. (b) Schematic diagram of a right angled slit in the case of a 2D BE structure and (c) a tilted slit in the proposed silicon-based plasmonic coupler.

Fig. 8:
Fig. 8:

(a) Simulated power coupling efficiency of the optimised plasmonic coupler as a function of WSl. Simulated electric field (Ex) profile of the plasmonic structure coupling into (b) a 20nm slit and (c) a 300nm wide slit.

Fig. 9:
Fig. 9:

Electric field profile (Ex) of the silicon based plasmonic structure coupling into a 300nm wide single mode dielectric waveguide.

Fig. 10:
Fig. 10:

Simulated power coupling efficiency into each slit as a function of varying Wgap. The inset shows the magnified view of the electric field profile (Ex) of the silicon-based plasmonic splitter coupling into two 50nm wide nano-slit waveguides.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

B n = ( T G T L ) n 1 T G A 1 + i = 1 n ( T G T L ) n i exp ( j ( n i ) ϕ ) C i
A 1 = [ A 1 + A 1 ] , B n = [ B n + B n ] , C i = [ C i B r C i F / t C i F / t ]
T G = [ t r 2 / t r / t r / t 1 / t ] T L = [ exp ( j β S P P L ) 0 0 exp ( j β S P P L ) ]
[ B n + B n ] = [ T 11 T 12 T 21 T 22 ] [ A 1 + A 1 ] + [ S + S ]
A 1 = S T 22 , B n + = S + T 12 S T 22

Metrics