Abstract

Coherent anti-Stokes Raman scattering (CARS) spectra are acquired at 5 kHz in steady and unsteady flames while suppressing the nonresonant background by polarization techniques. Broadband femtosecond (fs) pump and Stokes pulses efficiently excite many Raman transitions in diatomic nitrogen which subsequently interfere and decay. Single-laser-shot measurements are performed as the decay of the Raman coherence is mapped to the frequency of the CARS signal by a chirped-probe pulse (CPP). As temperature increases, more Raman transitions contribute to the Raman coherence which leads to faster decay of the Raman coherence. Experimental fs CARS spectra are compared to a theoretical model to extract temperature measurements. The effects of probe time delay and temperature on nonresonant background suppressed CPP fs CARS spectra are examined. By suppressing the nonresonant background the evolution of the Raman coherence near zero probe time delay is more clearly revealed. The structure of the CPP fs CARS spectra with and without nonresonant background suppression is compared. The utility of polarization suppression of the nonresonant background for CPP fs CARS measurements is discussed.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem 1(1), 663–687 (2008).
    [CrossRef] [PubMed]
  2. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
    [CrossRef]
  3. S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
    [CrossRef] [PubMed]
  4. S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
    [CrossRef]
  5. J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
    [CrossRef] [PubMed]
  6. H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
    [CrossRef] [PubMed]
  7. J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express 20(5), 5003–5010 (2012).
    [CrossRef] [PubMed]
  8. H. U. Stauffer, W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2,” Appl. Opt. 50(4), A38–A48 (2011).
    [CrossRef] [PubMed]
  9. S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
    [CrossRef]
  10. C. J. Kliewer, Y. Gao, T. Seeger, B. D. Patterson, R. L. Farrow, and T. B. Settersten, “Quantitative one-dimensional imaging using picosecond dual-broadband pure-rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 50(12), 1770–1778 (2011).
    [CrossRef] [PubMed]
  11. W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
    [CrossRef] [PubMed]
  12. X. Wang, A. Zhang, M. Zhi, A. V. Sokolov, and G. R. Welch, “Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique,” Phys. Rev. A 81(1), 013813 (2010).
    [CrossRef]
  13. Y. J. Lee, S. H. Parekh, J. A. Fagan, and M. T. Cicerone, “Phonon dephasing and population decay dynamics of the G-band of semiconducting single-wall carbon nanotubes,” Phys. Rev. B 82(16), 165432 (2010).
    [CrossRef]
  14. J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
    [CrossRef] [PubMed]
  15. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [CrossRef]
  16. O. Yue, M. T. Bremer, D. Pestov, J. R. Gord, S. Roy, M. Dantos, “Gas-phase thermometry via multi-time-to-frequency mapping of coherence dephasing,” (accepted for publication in J. of Phys. Chem. A, 2012).
  17. P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19(6), 5163–5171 (2011).
    [CrossRef] [PubMed]
  18. R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127(4), 044316 (2007).
    [CrossRef] [PubMed]
  19. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
    [CrossRef]
  20. T. Lang and M. Motzkus, “Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry,” J. Opt. Soc. Am. B 19(2), 340–344 (2002).
    [CrossRef]
  21. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
    [CrossRef] [PubMed]
  22. L. Rahn, L. Zych, and P. Mattern, “Coherent anti-Stokes Raman spectroscopy (CARS) with background rejection in a flame,” IEEE J. Quantum Electron. 15(9), 973 (1979).
    [CrossRef]
  23. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
    [CrossRef] [PubMed]
  24. D. Gachet, F. Billard, and H. Rigneault, “Focused field symmetries for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. A 77(6), 061802 (2008).
    [CrossRef]
  25. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
    [CrossRef]
  26. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
    [CrossRef] [PubMed]
  27. J. Lin, F. Lu, W. Zheng, and Z. Huang, “Annular aperture-detected coherent anti-Stokes Raman scattering microscopy for high contrast vibrational imaging,” Appl. Phys. Lett. 97(8), 083701 (2010).
    [CrossRef]
  28. D. Gachet, S. Brustlein, and H. Rigneault, “Revisiting the Young’s double slit experiment for background-free nonlinear Raman spectroscopy and microscopy,” Phys. Rev. Lett. 104(21), 213905 (2010).
    [CrossRef] [PubMed]
  29. J. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
    [CrossRef]
  30. X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801 (2011).
    [CrossRef]
  31. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
    [CrossRef] [PubMed]
  32. C. Alan, Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam, 1996).
  33. D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104(3), 699–714 (2011).
    [CrossRef]

2012 (2)

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
[CrossRef] [PubMed]

J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express 20(5), 5003–5010 (2012).
[CrossRef] [PubMed]

2011 (8)

H. U. Stauffer, W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2,” Appl. Opt. 50(4), A38–A48 (2011).
[CrossRef] [PubMed]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19(6), 5163–5171 (2011).
[CrossRef] [PubMed]

C. J. Kliewer, Y. Gao, T. Seeger, B. D. Patterson, R. L. Farrow, and T. B. Settersten, “Quantitative one-dimensional imaging using picosecond dual-broadband pure-rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 50(12), 1770–1778 (2011).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
[CrossRef] [PubMed]

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
[CrossRef] [PubMed]

X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801 (2011).
[CrossRef]

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104(3), 699–714 (2011).
[CrossRef]

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

2010 (5)

X. Wang, A. Zhang, M. Zhi, A. V. Sokolov, and G. R. Welch, “Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique,” Phys. Rev. A 81(1), 013813 (2010).
[CrossRef]

Y. J. Lee, S. H. Parekh, J. A. Fagan, and M. T. Cicerone, “Phonon dephasing and population decay dynamics of the G-band of semiconducting single-wall carbon nanotubes,” Phys. Rev. B 82(16), 165432 (2010).
[CrossRef]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

J. Lin, F. Lu, W. Zheng, and Z. Huang, “Annular aperture-detected coherent anti-Stokes Raman scattering microscopy for high contrast vibrational imaging,” Appl. Phys. Lett. 97(8), 083701 (2010).
[CrossRef]

D. Gachet, S. Brustlein, and H. Rigneault, “Revisiting the Young’s double slit experiment for background-free nonlinear Raman spectroscopy and microscopy,” Phys. Rev. Lett. 104(21), 213905 (2010).
[CrossRef] [PubMed]

2009 (2)

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

2008 (2)

D. Gachet, F. Billard, and H. Rigneault, “Focused field symmetries for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. A 77(6), 061802 (2008).
[CrossRef]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem 1(1), 663–687 (2008).
[CrossRef] [PubMed]

2007 (2)

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127(4), 044316 (2007).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
[CrossRef] [PubMed]

2006 (2)

E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

2005 (2)

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
[CrossRef] [PubMed]

2004 (1)

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

2003 (1)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

2002 (3)

1979 (1)

L. Rahn, L. Zych, and P. Mattern, “Coherent anti-Stokes Raman spectroscopy (CARS) with background rejection in a flame,” IEEE J. Quantum Electron. 15(9), 973 (1979).
[CrossRef]

Billard, F.

D. Gachet, F. Billard, and H. Rigneault, “Focused field symmetries for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. A 77(6), 061802 (2008).
[CrossRef]

Blake, J. A.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Bonn, M.

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

Brustlein, S.

D. Gachet, S. Brustlein, and H. Rigneault, “Revisiting the Young’s double slit experiment for background-free nonlinear Raman spectroscopy and microscopy,” Phys. Rev. Lett. 104(21), 213905 (2010).
[CrossRef] [PubMed]

Cheng, J.

Cheng, J. X.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Cicerone, M. T.

Y. J. Lee, S. H. Parekh, J. A. Fagan, and M. T. Cicerone, “Phonon dephasing and population decay dynamics of the G-band of semiconducting single-wall carbon nanotubes,” Phys. Rev. B 82(16), 165432 (2010).
[CrossRef]

Danielson, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Dantus, M.

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19(6), 5163–5171 (2011).
[CrossRef] [PubMed]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

Dedic, C. E.

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

Fagan, J. A.

Y. J. Lee, S. H. Parekh, J. A. Fagan, and M. T. Cicerone, “Phonon dephasing and population decay dynamics of the G-band of semiconducting single-wall carbon nanotubes,” Phys. Rev. B 82(16), 165432 (2010).
[CrossRef]

Farrow, R. L.

Gachet, D.

D. Gachet, S. Brustlein, and H. Rigneault, “Revisiting the Young’s double slit experiment for background-free nonlinear Raman spectroscopy and microscopy,” Phys. Rev. Lett. 104(21), 213905 (2010).
[CrossRef] [PubMed]

D. Gachet, F. Billard, and H. Rigneault, “Focused field symmetries for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. A 77(6), 061802 (2008).
[CrossRef]

Gao, Y.

Gord, J. R.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
[CrossRef] [PubMed]

J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express 20(5), 5003–5010 (2012).
[CrossRef] [PubMed]

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
[CrossRef] [PubMed]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19(6), 5163–5171 (2011).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
[CrossRef] [PubMed]

H. U. Stauffer, W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2,” Appl. Opt. 50(4), A38–A48 (2011).
[CrossRef] [PubMed]

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104(3), 699–714 (2011).
[CrossRef]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem 1(1), 663–687 (2008).
[CrossRef] [PubMed]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127(4), 044316 (2007).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
[CrossRef] [PubMed]

Gunaratne, T.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

Hsu, P. S.

Huang, Z.

J. Lin, F. Lu, W. Zheng, and Z. Huang, “Annular aperture-detected coherent anti-Stokes Raman scattering microscopy for high contrast vibrational imaging,” Appl. Phys. Lett. 97(8), 083701 (2010).
[CrossRef]

Kennedy, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Kinnius, P. J.

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127(4), 044316 (2007).
[CrossRef] [PubMed]

Kliewer, C. J.

Kulatilaka, W. D.

Lang, T.

Lee, Y. J.

Y. J. Lee, S. H. Parekh, J. A. Fagan, and M. T. Cicerone, “Phonon dephasing and population decay dynamics of the G-band of semiconducting single-wall carbon nanotubes,” Phys. Rev. B 82(16), 165432 (2010).
[CrossRef]

Lin, J.

J. Lin, F. Lu, W. Zheng, and Z. Huang, “Annular aperture-detected coherent anti-Stokes Raman scattering microscopy for high contrast vibrational imaging,” Appl. Phys. Lett. 97(8), 083701 (2010).
[CrossRef]

Lozovoy, V. V.

Lu, F.

J. Lin, F. Lu, W. Zheng, and Z. Huang, “Annular aperture-detected coherent anti-Stokes Raman scattering microscopy for high contrast vibrational imaging,” Appl. Phys. Lett. 97(8), 083701 (2010).
[CrossRef]

Lucht, R. P.

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104(3), 699–714 (2011).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127(4), 044316 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

Lyn, R. K.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Mattern, P.

L. Rahn, L. Zych, and P. Mattern, “Coherent anti-Stokes Raman spectroscopy (CARS) with background rejection in a flame,” IEEE J. Quantum Electron. 15(9), 973 (1979).
[CrossRef]

Meyer, T. R.

J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express 20(5), 5003–5010 (2012).
[CrossRef] [PubMed]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
[CrossRef] [PubMed]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem 1(1), 663–687 (2008).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
[CrossRef] [PubMed]

Miller, J. D.

Motzkus, M.

Müller, M.

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

Parekh, S. H.

Y. J. Lee, S. H. Parekh, J. A. Fagan, and M. T. Cicerone, “Phonon dephasing and population decay dynamics of the G-band of semiconducting single-wall carbon nanotubes,” Phys. Rev. B 82(16), 165432 (2010).
[CrossRef]

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

Patterson, B. D.

Pestov, D.

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19(6), 5163–5171 (2011).
[CrossRef] [PubMed]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

Pezacki, J. P.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Rahn, L.

L. Rahn, L. Zych, and P. Mattern, “Coherent anti-Stokes Raman spectroscopy (CARS) with background rejection in a flame,” IEEE J. Quantum Electron. 15(9), 973 (1979).
[CrossRef]

Richardson, D. R.

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104(3), 699–714 (2011).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

Rigneault, H.

D. Gachet, S. Brustlein, and H. Rigneault, “Revisiting the Young’s double slit experiment for background-free nonlinear Raman spectroscopy and microscopy,” Phys. Rev. Lett. 104(21), 213905 (2010).
[CrossRef] [PubMed]

D. Gachet, F. Billard, and H. Rigneault, “Focused field symmetries for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. A 77(6), 061802 (2008).
[CrossRef]

Rinia, H. A.

Roy, S.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
[CrossRef] [PubMed]

J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express 20(5), 5003–5010 (2012).
[CrossRef] [PubMed]

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
[CrossRef] [PubMed]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19(6), 5163–5171 (2011).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
[CrossRef] [PubMed]

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104(3), 699–714 (2011).
[CrossRef]

H. U. Stauffer, W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2,” Appl. Opt. 50(4), A38–A48 (2011).
[CrossRef] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem 1(1), 663–687 (2008).
[CrossRef] [PubMed]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127(4), 044316 (2007).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
[CrossRef] [PubMed]

Seeger, T.

Settersten, T. B.

Silberberg, Y.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

Singaravelu, R.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Slipchenko, M. N.

Sokolov, A. V.

X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801 (2011).
[CrossRef]

X. Wang, A. Zhang, M. Zhi, A. V. Sokolov, and G. R. Welch, “Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique,” Phys. Rev. A 81(1), 013813 (2010).
[CrossRef]

Stauffer, H. U.

Vartiainen, E. M.

Volkmer, A.

J. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

Wang, K.

X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801 (2011).
[CrossRef]

Wang, X.

X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801 (2011).
[CrossRef]

X. Wang, A. Zhang, M. Zhi, A. V. Sokolov, and G. R. Welch, “Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique,” Phys. Rev. A 81(1), 013813 (2010).
[CrossRef]

Welch, G. R.

X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801 (2011).
[CrossRef]

X. Wang, A. Zhang, M. Zhi, A. V. Sokolov, and G. R. Welch, “Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique,” Phys. Rev. A 81(1), 013813 (2010).
[CrossRef]

Wrzesinski, P.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

Wrzesinski, P. J.

Xie, X. S.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
[CrossRef]

Zhang, A.

X. Wang, A. Zhang, M. Zhi, A. V. Sokolov, and G. R. Welch, “Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique,” Phys. Rev. A 81(1), 013813 (2010).
[CrossRef]

Zheng, W.

J. Lin, F. Lu, W. Zheng, and Z. Huang, “Annular aperture-detected coherent anti-Stokes Raman scattering microscopy for high contrast vibrational imaging,” Appl. Phys. Lett. 97(8), 083701 (2010).
[CrossRef]

Zhi, M.

X. Wang, A. Zhang, M. Zhi, A. V. Sokolov, and G. R. Welch, “Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique,” Phys. Rev. A 81(1), 013813 (2010).
[CrossRef]

Zych, L.

L. Rahn, L. Zych, and P. Mattern, “Coherent anti-Stokes Raman spectroscopy (CARS) with background rejection in a flame,” IEEE J. Quantum Electron. 15(9), 973 (1979).
[CrossRef]

Annu. Rev. Anal. Chem (1)

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem 1(1), 663–687 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104(3), 699–714 (2011).
[CrossRef]

Appl. Phys. Lett. (5)

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J. Lin, F. Lu, W. Zheng, and Z. Huang, “Annular aperture-detected coherent anti-Stokes Raman scattering microscopy for high contrast vibrational imaging,” Appl. Phys. Lett. 97(8), 083701 (2010).
[CrossRef]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

L. Rahn, L. Zych, and P. Mattern, “Coherent anti-Stokes Raman spectroscopy (CARS) with background rejection in a flame,” IEEE J. Quantum Electron. 15(9), 973 (1979).
[CrossRef]

J. Chem. Phys. (2)

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127(4), 044316 (2007).
[CrossRef] [PubMed]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Nat. Chem. Biol. (1)

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (3)

D. Gachet, F. Billard, and H. Rigneault, “Focused field symmetries for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. A 77(6), 061802 (2008).
[CrossRef]

X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801 (2011).
[CrossRef]

X. Wang, A. Zhang, M. Zhi, A. V. Sokolov, and G. R. Welch, “Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique,” Phys. Rev. A 81(1), 013813 (2010).
[CrossRef]

Phys. Rev. B (1)

Y. J. Lee, S. H. Parekh, J. A. Fagan, and M. T. Cicerone, “Phonon dephasing and population decay dynamics of the G-band of semiconducting single-wall carbon nanotubes,” Phys. Rev. B 82(16), 165432 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

D. Gachet, S. Brustlein, and H. Rigneault, “Revisiting the Young’s double slit experiment for background-free nonlinear Raman spectroscopy and microscopy,” Phys. Rev. Lett. 104(21), 213905 (2010).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

Prog. Energy Combust. Sci. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

Other (2)

O. Yue, M. T. Bremer, D. Pestov, J. R. Gord, S. Roy, M. Dantos, “Gas-phase thermometry via multi-time-to-frequency mapping of coherence dephasing,” (accepted for publication in J. of Phys. Chem. A, 2012).

C. Alan, Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics