Abstract

We report on frequency comb generation at 1.5 μm by injection of a CW laser in a hybridly mode-locked InAs/InP two-section quantum-dot laser (HMLQDL). The generated comb has > 60 modes spaced by ∼ 4.5 GHz and a −20 dBc width of > 100 GHz (23 modes) at > 30 dB signal to background ratio. Comb generation was observed with the CW laser (red) detuned more than 20 nm outside the HMLQDL spectrum, spanning a large part of the gain spectrum of the quantum dot material. It is shown that the generated comb is fully coherent with the injected CW laser and RF frequency used to drive the hybrid mode-locking. This method of comb generation is of interest for the creation of small and robust frequency combs for use in optical frequency metrology, high-frequency (> 100 GHz) RF generation and telecommunication applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
    [CrossRef] [PubMed]
  2. D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
    [CrossRef] [PubMed]
  3. H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz level measurement of the optical clock frequency in a single 88Sr+ ion,” Science306, 1355–1358 (2004).
    [CrossRef] [PubMed]
  4. P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express17, 9300–9313 (2009).
    [CrossRef] [PubMed]
  5. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
    [CrossRef] [PubMed]
  6. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature (London)445, 627–630 (2007).
    [CrossRef]
  7. S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
    [CrossRef]
  8. Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express16, 10835–10840 (2008).
    [CrossRef] [PubMed]
  9. R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron.17, 1292–1301 (2011).
    [CrossRef]
  10. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
    [CrossRef]
  11. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photonics1, 395–401 (2007).
    [CrossRef]
  12. K. W. Holman, D. J. Jones, J. Ye, and E. P. Ippen, “Orthogonal control of the frequency comb dynamics of a mode-locked laser diode,” Opt. Lett.28, 2405–2407 (2003).
    [CrossRef] [PubMed]
  13. S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg, “Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb,” Opt. Express17, 3331–3340 (2009).
    [CrossRef] [PubMed]
  14. T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, S. P. Hegarty, D. Rachinskii, and G. Huyet, “Quantum-dot mode-locked lasers with dual mode optical injection,” IEEE Photonics Tech. Lett.22, 359–361 (2010).
    [CrossRef]
  15. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 phase × 32 amplitude optical arbitrary waveform generation,” Opt. Lett.32, 865–867 (2007).
    [CrossRef] [PubMed]
  16. H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18, 3415–3425 (2010).
    [CrossRef] [PubMed]
  17. S. Arahira, H. Takahashi, K. Nakamura, H. Yaegashi, and Y. Ogawa, “Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-locked laser diode with orthogonally pumped polarization-diversity configuration,” IEEE J. Quantum Electron.45, 476 –487 (2009).
    [CrossRef]
  18. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
    [CrossRef]
  19. T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photonics Tech. Lett.17, 1274 –1276 (2005).
    [CrossRef]
  20. T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Tech.28, 2247 –2257 (2010).
    [CrossRef]
  21. R. Zhou, S. Latkowski, J. O’Caroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” Opt. Express19, B415–B420 (2011).
    [CrossRef]
  22. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16, 841–859 (2008).
    [CrossRef] [PubMed]
  23. M. J. R. Heck, E. J. Salumbides, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. E. Eikema, and W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 μm,” Opt. Express17, 18063–18075 (2009).
    [CrossRef] [PubMed]
  24. M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron.15, 634–643 (2009).
    [CrossRef]
  25. M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 μm,” Opt. Express15, 16292–16301 (2007).
    [CrossRef] [PubMed]
  26. S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
    [CrossRef]
  27. M. S. Tahvili, L. Du, M. J. R. Heck, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers,” Opt. Express20, 8117–8135 (2012).
    [CrossRef] [PubMed]
  28. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
    [CrossRef]
  29. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser.” Opt. Express13, 9169–9201 (2005).
    [CrossRef]
  30. R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
    [CrossRef]
  31. T. Healy, F. C. Garcia Gunning, and A. D. Ellis, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express15, 2981–2986 (2007).
    [CrossRef] [PubMed]

2012

2011

R. Zhou, S. Latkowski, J. O’Caroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” Opt. Express19, B415–B420 (2011).
[CrossRef]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron.17, 1292–1301 (2011).
[CrossRef]

2010

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, S. P. Hegarty, D. Rachinskii, and G. Huyet, “Quantum-dot mode-locked lasers with dual mode optical injection,” IEEE Photonics Tech. Lett.22, 359–361 (2010).
[CrossRef]

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18, 3415–3425 (2010).
[CrossRef] [PubMed]

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Tech.28, 2247 –2257 (2010).
[CrossRef]

2009

S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg, “Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb,” Opt. Express17, 3331–3340 (2009).
[CrossRef] [PubMed]

M. J. R. Heck, E. J. Salumbides, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. E. Eikema, and W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 μm,” Opt. Express17, 18063–18075 (2009).
[CrossRef] [PubMed]

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron.15, 634–643 (2009).
[CrossRef]

S. Arahira, H. Takahashi, K. Nakamura, H. Yaegashi, and Y. Ogawa, “Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-locked laser diode with orthogonally pumped polarization-diversity configuration,” IEEE J. Quantum Electron.45, 476 –487 (2009).
[CrossRef]

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express17, 9300–9313 (2009).
[CrossRef] [PubMed]

2008

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express16, 10835–10840 (2008).
[CrossRef] [PubMed]

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16, 841–859 (2008).
[CrossRef] [PubMed]

2007

2006

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

2005

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photonics Tech. Lett.17, 1274 –1276 (2005).
[CrossRef]

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser.” Opt. Express13, 9169–9201 (2005).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
[CrossRef]

2004

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz level measurement of the optical clock frequency in a single 88Sr+ ion,” Science306, 1355–1358 (2004).
[CrossRef] [PubMed]

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

2003

2000

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
[CrossRef]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

1989

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
[CrossRef]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
[CrossRef]

Accard, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron.17, 1292–1301 (2011).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
[CrossRef]

Akrout, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron.17, 1292–1301 (2011).
[CrossRef]

Anandarajah, P.

Anantathanasarn, S.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron.15, 634–643 (2009).
[CrossRef]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 μm,” Opt. Express15, 16292–16301 (2007).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

Arahira, S.

S. Arahira, H. Takahashi, K. Nakamura, H. Yaegashi, and Y. Ogawa, “Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-locked laser diode with orthogonally pumped polarization-diversity configuration,” IEEE J. Quantum Electron.45, 476 –487 (2009).
[CrossRef]

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Arsenijevic, D.

Balling, P.

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express17, 9300–9313 (2009).
[CrossRef] [PubMed]

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser.” Opt. Express13, 9169–9201 (2005).
[CrossRef]

Bao, H.

Barbarin, Y.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

Barrios, P. J.

Barry, L. P.

R. Zhou, S. Latkowski, J. O’Caroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” Opt. Express19, B415–B420 (2011).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, S. P. Hegarty, D. Rachinskii, and G. Huyet, “Quantum-dot mode-locked lasers with dual mode optical injection,” IEEE Photonics Tech. Lett.22, 359–361 (2010).
[CrossRef]

Barwood, G. P.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz level measurement of the optical clock frequency in a single 88Sr+ ion,” Science306, 1355–1358 (2004).
[CrossRef] [PubMed]

Bente, E. A. J. M.

M. S. Tahvili, L. Du, M. J. R. Heck, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers,” Opt. Express20, 8117–8135 (2012).
[CrossRef] [PubMed]

M. J. R. Heck, E. J. Salumbides, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. E. Eikema, and W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 μm,” Opt. Express17, 18063–18075 (2009).
[CrossRef] [PubMed]

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron.15, 634–643 (2009).
[CrossRef]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 μm,” Opt. Express15, 16292–16301 (2007).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

Bimberg, D.

Bogaart, E. W.

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

Braje, D.

Cao, J.

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photonics1, 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
[CrossRef]

Cundiff, S.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

de Vries, T.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

Deepthy, A.

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

Diddams, S.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

Du, L.

Eijkemans, T. J.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

Eikema, K. S. E.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron.15, 634–643 (2009).
[CrossRef]

M. J. R. Heck, E. J. Salumbides, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. E. Eikema, and W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 μm,” Opt. Express17, 18063–18075 (2009).
[CrossRef] [PubMed]

Ellis, A. D.

Fiol, G.

Fischer, M.

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser.” Opt. Express13, 9169–9201 (2005).
[CrossRef]

Fontaine, N. K.

Fortier, T.

Garcia Gunning, F. C.

Geluk, E. J.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

Gill, P.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz level measurement of the optical clock frequency in a single 88Sr+ ion,” Science306, 1355–1358 (2004).
[CrossRef] [PubMed]

Gong, Q.

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

Habruseva, T.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, S. P. Hegarty, D. Rachinskii, and G. Huyet, “Quantum-dot mode-locked lasers with dual mode optical injection,” IEEE Photonics Tech. Lett.22, 359–361 (2010).
[CrossRef]

Hall, J.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

Haverkort, J. E. M.

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

Healy, T.

Heck, M. J. R.

Hegarty, S. P.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, S. P. Hegarty, D. Rachinskii, and G. Huyet, “Quantum-dot mode-locked lasers with dual mode optical injection,” IEEE Photonics Tech. Lett.22, 359–361 (2010).
[CrossRef]

Heritage, J. P.

Hollberg, L.

Holman, K. W.

Holzwarth, R.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser.” Opt. Express13, 9169–9201 (2005).
[CrossRef]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

Huang, G.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz level measurement of the optical clock frequency in a single 88Sr+ ion,” Science306, 1355–1358 (2004).
[CrossRef] [PubMed]

Huyet, G.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, S. P. Hegarty, D. Rachinskii, and G. Huyet, “Quantum-dot mode-locked lasers with dual mode optical injection,” IEEE Photonics Tech. Lett.22, 359–361 (2010).
[CrossRef]

Il’inskaya, N. D.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
[CrossRef]

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
[CrossRef]

Ippen, E. P.

Jiang, W.

Jones, D.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Jones, D. J.

Karalar, A.

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Kirchner, M.

Kitayama, K.

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Tech.28, 2247 –2257 (2010).
[CrossRef]

Kitayama, K.-I.

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photonics Tech. Lett.17, 1274 –1276 (2005).
[CrossRef]

Klein, H. A.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz level measurement of the optical clock frequency in a single 88Sr+ ion,” Science306, 1355–1358 (2004).
[CrossRef] [PubMed]

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

Kolner, B. H.

Kovsh, A. R.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
[CrossRef]

Kren, P.

Kubina, P.

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser.” Opt. Express13, 9169–9201 (2005).
[CrossRef]

Kuri, T.

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Tech.28, 2247 –2257 (2010).
[CrossRef]

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photonics Tech. Lett.17, 1274 –1276 (2005).
[CrossRef]

Latkowski, S.

Lea, S. N.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz level measurement of the optical clock frequency in a single 88Sr+ ion,” Science306, 1355–1358 (2004).
[CrossRef] [PubMed]

Ledenstov, N. N.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
[CrossRef]

Lelarge, F.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron.17, 1292–1301 (2011).
[CrossRef]

Liu, J. R.

Livshits, D. A.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
[CrossRef]

Lu, Z. G.

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Margolis, H. S.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz level measurement of the optical clock frequency in a single 88Sr+ ion,” Science306, 1355–1358 (2004).
[CrossRef] [PubMed]

Martinez, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron.17, 1292–1301 (2011).
[CrossRef]

Mašika, P.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature (London)445, 627–630 (2007).
[CrossRef]

Merghem, K.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron.17, 1292–1301 (2011).
[CrossRef]

Meuer, C.

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
[CrossRef]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
[CrossRef]

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Nakamura, K.

S. Arahira, H. Takahashi, K. Nakamura, H. Yaegashi, and Y. Ogawa, “Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-locked laser diode with orthogonally pumped polarization-diversity configuration,” IEEE J. Quantum Electron.45, 476 –487 (2009).
[CrossRef]

Nakasyotani, T.

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photonics Tech. Lett.17, 1274 –1276 (2005).
[CrossRef]

Nötzel, R.

M. S. Tahvili, L. Du, M. J. R. Heck, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers,” Opt. Express20, 8117–8135 (2012).
[CrossRef] [PubMed]

M. J. R. Heck, E. J. Salumbides, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. E. Eikema, and W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 μm,” Opt. Express17, 18063–18075 (2009).
[CrossRef] [PubMed]

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron.15, 634–643 (2009).
[CrossRef]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 μm,” Opt. Express15, 16292–16301 (2007).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

O’Caroll, J.

O’Donoghue, S.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, S. P. Hegarty, D. Rachinskii, and G. Huyet, “Quantum-dot mode-locked lasers with dual mode optical injection,” IEEE Photonics Tech. Lett.22, 359–361 (2010).
[CrossRef]

Oei, Y. S.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

Oei, Y.-S.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron.15, 634–643 (2009).
[CrossRef]

M. J. R. Heck, E. J. Salumbides, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. E. Eikema, and W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 μm,” Opt. Express17, 18063–18075 (2009).
[CrossRef] [PubMed]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 μm,” Opt. Express15, 16292–16301 (2007).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

Ogawa, Y.

S. Arahira, H. Takahashi, K. Nakamura, H. Yaegashi, and Y. Ogawa, “Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-locked laser diode with orthogonally pumped polarization-diversity configuration,” IEEE J. Quantum Electron.45, 476 –487 (2009).
[CrossRef]

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
[CrossRef]

Okamoto, K.

Olmos, J.

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Tech.28, 2247 –2257 (2010).
[CrossRef]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
[CrossRef]

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Patent, E. A.

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

Phelan, R.

Poitras, D.

Poole, P. J.

Prasanth, R.

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

Rachinskii, D.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, S. P. Hegarty, D. Rachinskii, and G. Huyet, “Quantum-dot mode-locked lasers with dual mode optical injection,” IEEE Photonics Tech. Lett.22, 359–361 (2010).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photonics1, 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
[CrossRef]

Ramdane, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron.17, 1292–1301 (2011).
[CrossRef]

Ranka, J.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Raymond, S.

Rebrova, N.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, S. P. Hegarty, D. Rachinskii, and G. Huyet, “Quantum-dot mode-locked lasers with dual mode optical injection,” IEEE Photonics Tech. Lett.22, 359–361 (2010).
[CrossRef]

Reid, D. A.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, S. P. Hegarty, D. Rachinskii, and G. Huyet, “Quantum-dot mode-locked lasers with dual mode optical injection,” IEEE Photonics Tech. Lett.22, 359–361 (2010).
[CrossRef]

Renault, A.

M. J. R. Heck, E. J. Salumbides, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. E. Eikema, and W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 μm,” Opt. Express17, 18063–18075 (2009).
[CrossRef] [PubMed]

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron.15, 634–643 (2009).
[CrossRef]

Rosales, R.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron.17, 1292–1301 (2011).
[CrossRef]

Russell, P. S. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

Salumbides, E. J.

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
[CrossRef]

Sato, K.-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
[CrossRef]

Schmeckebier, H.

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Scott, R. P.

Servanton, G.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
[CrossRef]

Shieh, W.

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photonics1, 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
[CrossRef]

Smalbrugge, B.

Smalbrugge, E.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

Smit, M. K.

M. S. Tahvili, L. Du, M. J. R. Heck, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers,” Opt. Express20, 8117–8135 (2012).
[CrossRef] [PubMed]

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron.15, 634–643 (2009).
[CrossRef]

M. J. R. Heck, E. J. Salumbides, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. E. Eikema, and W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 μm,” Opt. Express17, 18063–18075 (2009).
[CrossRef] [PubMed]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 μm,” Opt. Express15, 16292–16301 (2007).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Stentz, A.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Szymaniec, K.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz level measurement of the optical clock frequency in a single 88Sr+ ion,” Science306, 1355–1358 (2004).
[CrossRef] [PubMed]

Tahvili, M. S.

Takahashi, H.

S. Arahira, H. Takahashi, K. Nakamura, H. Yaegashi, and Y. Ogawa, “Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-locked laser diode with orthogonally pumped polarization-diversity configuration,” IEEE J. Quantum Electron.45, 476 –487 (2009).
[CrossRef]

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
[CrossRef]

Tang, Y.

Toda, H.

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Tech.28, 2247 –2257 (2010).
[CrossRef]

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photonics Tech. Lett.17, 1274 –1276 (2005).
[CrossRef]

Tourrenc, J.-P.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron.17, 1292–1301 (2011).
[CrossRef]

Ubachs, W.

M. J. R. Heck, E. J. Salumbides, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. E. Eikema, and W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 μm,” Opt. Express17, 18063–18075 (2009).
[CrossRef] [PubMed]

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron.15, 634–643 (2009).
[CrossRef]

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

Ustinov, V. M.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
[CrossRef]

van den Berg, S. A.

van der Tol, J. J. G. M.

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

van Otten, F. W. M.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

van Veldhoven, P. J.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

van Veldhoven, R.

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

Weiner, A. M.

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Windeler, R.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Wolter, J. H.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

Yaegashi, H.

S. Arahira, H. Takahashi, K. Nakamura, H. Yaegashi, and Y. Ogawa, “Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-locked laser diode with orthogonally pumped polarization-diversity configuration,” IEEE J. Quantum Electron.45, 476 –487 (2009).
[CrossRef]

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
[CrossRef]

Ye, J.

Yoo, S. J. B.

Zadiranov, Y. M.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
[CrossRef]

Zhao, G.

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

Zhou, R.

Zhukov, A. E.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
[CrossRef]

Appl. Phys. Lett.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006).
[CrossRef]

R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004).
[CrossRef]

Electron. Lett.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000).
[CrossRef]

IEEE J. Quantum Electron.

S. Arahira, H. Takahashi, K. Nakamura, H. Yaegashi, and Y. Ogawa, “Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-locked laser diode with orthogonally pumped polarization-diversity configuration,” IEEE J. Quantum Electron.45, 476 –487 (2009).
[CrossRef]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron.15, 634–643 (2009).
[CrossRef]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron.17, 1292–1301 (2011).
[CrossRef]

IEEE Photonics Tech. Lett.

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photonics Tech. Lett.17, 1274 –1276 (2005).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, S. P. Hegarty, D. Rachinskii, and G. Huyet, “Quantum-dot mode-locked lasers with dual mode optical injection,” IEEE Photonics Tech. Lett.22, 359–361 (2010).
[CrossRef]

J. Lightwave Tech.

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Tech.28, 2247 –2257 (2010).
[CrossRef]

Microelectron. J.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006).
[CrossRef]

Nature (London)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature (London)445, 627–630 (2007).
[CrossRef]

Nature Photonics

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photonics1, 395–401 (2007).
[CrossRef]

Opt. Express

R. Zhou, S. Latkowski, J. O’Caroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” Opt. Express19, B415–B420 (2011).
[CrossRef]

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16, 841–859 (2008).
[CrossRef] [PubMed]

M. J. R. Heck, E. J. Salumbides, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. E. Eikema, and W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 μm,” Opt. Express17, 18063–18075 (2009).
[CrossRef] [PubMed]

Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express16, 10835–10840 (2008).
[CrossRef] [PubMed]

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express17, 9300–9313 (2009).
[CrossRef] [PubMed]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 μm,” Opt. Express15, 16292–16301 (2007).
[CrossRef] [PubMed]

S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg, “Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb,” Opt. Express17, 3331–3340 (2009).
[CrossRef] [PubMed]

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18, 3415–3425 (2010).
[CrossRef] [PubMed]

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser.” Opt. Express13, 9169–9201 (2005).
[CrossRef]

M. S. Tahvili, L. Du, M. J. R. Heck, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers,” Opt. Express20, 8117–8135 (2012).
[CrossRef] [PubMed]

T. Healy, F. C. Garcia Gunning, and A. D. Ellis, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express15, 2981–2986 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

Science

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz level measurement of the optical clock frequency in a single 88Sr+ ion,” Science306, 1355–1358 (2004).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Setup for studies of CW injected QDL device behavior. HMLQDL: hybridly mode-locked quantum dot laser, iso: isolator, SOA: semiconductor optical amplifier, FCL: frequency comb laser, VOA: variable optical attenuator, thin black lines: electrical signals, red lines: free space optical path, thick black lines: fiber optics.

Fig. 2
Fig. 2

Setup used to characterize the mode structure of the QDL with CW laser injection. HMLQDL: hybridly mode-locked quantum dot laser, iso: isolator SOA: semiconductor optical amplifier, ESA: electrical spectrum analyzer, OSA: optical spectrum analyzer, FCL: frequency comb laser, VOA: variable optical attenuator, thin black lines: electrical signals, red lines: free space optical path, thick black lines: fiber optics.

Fig. 3
Fig. 3

Optical heterodyne beat signals of the QDL light including the modulated CW injection laser with the probe laser measured with the electrical spectrum analyzer (ESA). The wavelength of the injection laser was tuned inside the (H)MLQDL’s spectrum at ∼ 1515 nm. QDL modes are visible as broad peaks (II and III) at Iinjection ∼ 645 mA. (a) Passively mode-locked QDL. frep ∼ 4.5 GHz, modes 1 (IV) and 2 (I) of the modulated CW injection laser are visible at ∼ 3.4 and ∼ 1.1 GHz. (b) Hybridly mode-locked QDL. frep = 4.46 GHz, modes of the modulated CW injection laser are visible at ∼ 3.8 (IV) and ∼ 0.7 GHz (I).

Fig. 4
Fig. 4

Setup used to investigate variation of Iinjection and fHML. HMLQDL: hybridly mode-locked quantum dot laser, iso: isolator, SOA: semiconductor optical amplifier, PD: photo diode, ESA: electrical spectrum analyzer, OSA: optical spectrum analyzer, FCL: frequency comb laser, VOA: variable optical attenuator, thin black lines: electrical signals, red lines: free space optical path, thick black lines: fiber optics.

Fig. 5
Fig. 5

(a) Spectra of the passively mode-locked QDL. (b) Spectra of the passively mode-locked QDL with injected CW laser at ∼ 1525 nm.

Fig. 6
Fig. 6

(a) Spectra of the hybridly mode-locked QDL. (b) Spectra of the hybridly mode-locked QDL with modulated CW injection laser at ∼ 1525 nm. (left panel) Optical spectral widths of the QDL and the injected CW laser at −3, −10 and −20 dB relative to the peak height. Optical (middle panel) and RF repetition rate (right panel) spectra of the hybridly mode-locked QDL. The injected optical power was 2.8 mW into the 25% port (Fig 4).

Fig. 7
Fig. 7

Spectral width of the modulated CW injection laser as a function of fHML. Part (a) is for Iinjection = 500 mA, while part (b) shows the same for Iinjection = 1000 mA. (left panel) −3, −10 and −20 dB width of the modulated CW injection laser with respect to peak height. (middle panel) Optical spectrum of the modulated CW injection laser only. (right panel) RF repetition rate spectrum of the HMLQDL including the modulated CW injection laser. The injected optical power was 2.8 mW into the 25% port.

Fig. 8
Fig. 8

The signal to background ratio of each of the modes of the comb generated by the HMLQDL on the CW injection laser. Each dot represents a mode of the comb. The error bars give the rms deviation. The average of the OSA spectra recorded during the probe laser scan is given by the red line. The gain profile of the quantum dot laser is nearly constant on the wavelength scale of this plot.

Fig. 9
Fig. 9

Setup used to characterize the coherence of the comb generated on the CW injection laser. HMLQDL: hybridly mode-locked quantum dot laser, iso: isolator, SOA: semiconductor optical amplifier, OSA: optical spectrum analyzer, FCL: frequency comb laser, VOA: variable optical attenuator, thin black lines: electrical signals, red lines: free space optical path, thick black lines: fiber optics.

Fig. 10
Fig. 10

Illustration of the coherence measurement by using a frequency comb laser (FCL) and the generated QDL comb. The frequency difference between the CW lasers measured with both combs should be equal (Δf = 0) if the combs are coherent at the time scale of the measurement. This can be determined using the mode number differences and measured beat frequencies (fbeat).

Fig. 11
Fig. 11

Optical heterodyne beat of 2 CW lasers with the FCL and QDL comb, S/N > 30 dB at (po) = 14, confirming the coherence of the generated comb on the CW injection laser. (a) Frequency deviation Δf = 0.1(3.9) Hz at 0.1 s gate time. (b) Frequency deviation Δf = −1.2(2.9) Hz at 2.0 s gate time.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f CW = f CEO + n f rep + f beat ,
f CW 2 f CW 1 = ( n m ) f rep FCL + f beat CW 2 , FCL f beat CW 1 , FCL ,
f CW 2 f CW 1 = ( p o ) f rep QDL + f beat CW 2 , QDL f beat CW 1 , QDL .
Δ f = ( n m ) f rep FCL ( p o ) . f rep QDL + f beat CW 2 , FCL f beat CW 1 , FCL + f beat CW 1 , QDL 0 ,

Metrics