Abstract

We demonstrate high quality factor and high confinement in a silicon ring resonator fabricated by a thermal oxidation process. We fabricated a 50 μm bending radius racetrack resonator, with a 5 μm coupling region. We achieved an intrinsic quality factor of 760,000 for the fundamental TM mode, which corresponds to a propagation loss of 0.9 dB/cm. Both the fundamental TE and TM modes are highly confined in the waveguide, with effective indices of 3.0 for the TE mode and 2.9 for the TM mode.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12, 1678–1687 (2006).
    [CrossRef]
  2. Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in nonlinear silicon photonics 2011,” IEEE Photonics J.20114, 601–606 (2012).
  3. U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett.8, 647–648 (1996).
    [CrossRef]
  4. I. Kiyat, A. Aydinli, and N. Dagli, “High-Q silicon-on-insulator optical rib waveguide racetrack resonators,” Opt. Express13, 1900–1905 (2005).
    [CrossRef] [PubMed]
  5. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express15, 14467–14475 (2007).
    [CrossRef] [PubMed]
  6. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12, 1622–1631 (2004).
    [CrossRef] [PubMed]
  7. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13, 1515–1530 (2005).
    [CrossRef] [PubMed]
  8. G. S. Oehrlein, “Dry etching damage of silicon: a review,” Mater. Sci. Eng. B4, 441–450 (1989).
    [CrossRef]
  9. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron.26, 977–986 (1994).
    [CrossRef]
  10. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt.48, 958–963 (2009).
    [CrossRef] [PubMed]
  11. M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express19, 18827–18832 (2011).
    [CrossRef] [PubMed]
  12. L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express19, 6284–6289 (2011).
    [CrossRef] [PubMed]
  13. B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express18, 18592–18597 (2010).
    [CrossRef] [PubMed]
  14. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28, 1302–1304 (2003).
    [CrossRef] [PubMed]
  15. P. Rabiei, W. Steier, and L. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol.20, 1968–1975 (2002).
    [CrossRef]

2011

2010

2009

2007

2006

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12, 1678–1687 (2006).
[CrossRef]

2005

2004

2003

2002

1996

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett.8, 647–648 (1996).
[CrossRef]

1994

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron.26, 977–986 (1994).
[CrossRef]

1989

G. S. Oehrlein, “Dry etching damage of silicon: a review,” Mater. Sci. Eng. B4, 441–450 (1989).
[CrossRef]

Almeida, V. R.

Arndt, F.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett.8, 647–648 (1996).
[CrossRef]

Aydinli, A.

Bondarenko, O.

Borselli, M.

Cardenas, J.

Chen, E.

Dagli, N.

Dalton, L.

Desiatov, B.

Fainman, Y.

Fischer, U.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett.8, 647–648 (1996).
[CrossRef]

Gaeta, A.

Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in nonlinear silicon photonics 2011,” IEEE Photonics J.20114, 601–606 (2012).

Goykhman, I.

Johnson, T.

Khajavikhan, M.

Khan, M. H.

Kiyat, I.

Koch, T. L.

Kropp, J.-R.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett.8, 647–648 (1996).
[CrossRef]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron.26, 977–986 (1994).
[CrossRef]

Levy, U.

Li, J.

Lipson, M.

Luo, L.-W.

McNab, S.

Nezhad, M. P.

Oehrlein, G. S.

G. S. Oehrlein, “Dry etching damage of silicon: a review,” Mater. Sci. Eng. B4, 441–450 (1989).
[CrossRef]

Okawachi, Y.

Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in nonlinear silicon photonics 2011,” IEEE Photonics J.20114, 601–606 (2012).

Pafchek, R.

Painter, O.

Panepucci, R. R.

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron.26, 977–986 (1994).
[CrossRef]

Petermann, K.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett.8, 647–648 (1996).
[CrossRef]

Poitras, C.

Qi, M.

Rabiei, P.

Shen, H.

Simic, A.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12, 1678–1687 (2006).
[CrossRef]

Steier, W.

Tummidi, R.

Vlasov, Y.

Webster, M. A.

Wiederhecker, G. S.

Xiao, S.

Zinke, T.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett.8, 647–648 (1996).
[CrossRef]

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12, 1678–1687 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett.8, 647–648 (1996).
[CrossRef]

IEEE Photonics J.

Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in nonlinear silicon photonics 2011,” IEEE Photonics J.20114, 601–606 (2012).

J. Lightwave Technol.

Mater. Sci. Eng. B

G. S. Oehrlein, “Dry etching damage of silicon: a review,” Mater. Sci. Eng. B4, 441–450 (1989).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron.26, 977–986 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Process flow for high confinement etchless waveguide. (a) LPCVD deposition of 200 nm silicon nitride on top of 500 nm silicon-on-insulator (SOI) platform. (b) Patterning and etching of the silicon nitride using electron beam lithography and ma-N 2405 photoresist. (c) Waveguide after selective thermal oxidation of the silicon. (d) Deposition of 2 μm PECVD oxide as cladding.

Fig. 2
Fig. 2

(a) False colored SEM image of the cross-section of the silicon waveguide structure. In this image, the silicon nitride is not visible. (b) Simulated Poynting vector of the fundamental TM optical mode.

Fig. 3
Fig. 3

(a) Optical microscope image of the racetrack resonator. (b) SEM image of the cross-section of the silicon structure. The different thickness in the coupling region achieved by the slower oxidation rate in the gap region.

Fig. 4
Fig. 4

(a) Normalized transmission spectrum for TM polarized light. The spectrum is normalized to the average off-resonance transmission. The resonance peaks with high extinction correspond to the fundamental TM mode. The resonant peaks with the different FSR (with extinctions less than 3 dB) correspond to the higher order TM modes. (b) Normalized transmission spectrum of the resonance at λo = 1533.063 nm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α = 2 π n g Q int λ o = λ o Q int R F S R ,
R effective = C 2 π ,

Metrics