Abstract

We investigate the surface plasmon resonance in super-period nanohole arrays and demonstrate a surface plasmon resonance spectrometer using a super-period metal nanohole array device. Super-period nanohole arrays are patterned metal nanohole array gratings. In a super-period nanohole array, there is a small subwavelength nanohole period that supports local surface plasmon resonance, and also a large grating period that diffracts surface plasmon radiations to non-zeroth order diffractions. With the super-period metal nanohole array, surface plasmon resonance can be measured in the first order diffraction in addition to be traditionally measured in the zeroth order transmission. The resonance peak wavelength measured in the first order diffraction is slightly blue-shifted from the resonance wavelength measured in the zeroth order transmission.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  2. S.-H. Chang, S. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express13(8), 3150–3165 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-8-3150 .
    [CrossRef] [PubMed]
  3. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
    [CrossRef]
  4. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-16-3629 .
    [CrossRef] [PubMed]
  5. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
    [CrossRef]
  6. H. Liu and P. Lalanne, “Comprehensive microscopic model of the extraordinary optical transmission,” J. Opt. Soc. Am. A27(12), 2542–2550 (2010).
    [CrossRef] [PubMed]
  7. H. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B82(11), 115418 (2010).
    [CrossRef]
  8. A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010).
    [CrossRef] [PubMed]
  9. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
    [CrossRef] [PubMed]
  10. Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
    [CrossRef]
  11. Q. H. Park, “Optical antennas and plasmonics,” Contemp. Phys.50(2), 407–423 (2009).
    [CrossRef]
  12. H. Leong and J. Guo, “Surface plasmon resonance in superperiodic metal nanoslits,” Opt. Lett.36(24), 4764–4766 (2011).
    [CrossRef] [PubMed]
  13. J. Guo and H. Leong, “Investigation of surface plasmon resonance in super-period gold nanoslit arrays,” J. Opt. Soc. Am. B29(7), 1712–1716 (2012).
    [CrossRef]
  14. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  15. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008).
    [CrossRef] [PubMed]
  16. B. M. Ross and L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett.34(7), 896–898 (2009).
    [CrossRef] [PubMed]
  17. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

H. Leong and J. Guo, “Surface plasmon resonance in superperiodic metal nanoslits,” Opt. Lett.36(24), 4764–4766 (2011).
[CrossRef] [PubMed]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

2010 (3)

H. Liu and P. Lalanne, “Comprehensive microscopic model of the extraordinary optical transmission,” J. Opt. Soc. Am. A27(12), 2542–2550 (2010).
[CrossRef] [PubMed]

H. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B82(11), 115418 (2010).
[CrossRef]

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008).
[CrossRef] [PubMed]

2007 (1)

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

2006 (1)

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

2005 (1)

2004 (2)

H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-16-3629 .
[CrossRef] [PubMed]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

2002 (1)

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Aizpurua, J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008).
[CrossRef] [PubMed]

Alaverdyan, Y.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

Bravo-Abad, J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008).
[CrossRef] [PubMed]

Chang, S.-H.

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Degiron, A.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Ebbesen, T. W.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Enoch, S.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Eurenius, L.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

García-Vidal, F. J.

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010).
[CrossRef] [PubMed]

Genet, C.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Gray, S.

Guo, J.

Kall, M.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Koerkamp, K. J. K.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Kuipers, L.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Lalanne, P.

H. Liu and P. Lalanne, “Comprehensive microscopic model of the extraordinary optical transmission,” J. Opt. Soc. Am. A27(12), 2542–2550 (2010).
[CrossRef] [PubMed]

H. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B82(11), 115418 (2010).
[CrossRef]

Lee, L. P.

Leong, H.

Lezec, H.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Liu, H.

H. Liu and P. Lalanne, “Comprehensive microscopic model of the extraordinary optical transmission,” J. Opt. Soc. Am. A27(12), 2542–2550 (2010).
[CrossRef] [PubMed]

H. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B82(11), 115418 (2010).
[CrossRef]

Martin-Moreno, L.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Martín-Moreno, L.

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010).
[CrossRef] [PubMed]

Nikitin, A. Y.

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010).
[CrossRef] [PubMed]

Nordlander, P.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

Olsson, E.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

Park, Q. H.

Q. H. Park, “Optical antennas and plasmonics,” Contemp. Phys.50(2), 407–423 (2009).
[CrossRef]

Przybilla, F.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Ross, B. M.

Schatz, G.

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Segerink, F. B.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Sepulveda, B.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

Thio, T.

Treacy, M. M. J.

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
[CrossRef]

van Hulst, N. F.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

Contemp. Phys. (1)

Q. H. Park, “Optical antennas and plasmonics,” Contemp. Phys.50(2), 407–423 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Nano Lett. (2)

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008).
[CrossRef] [PubMed]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

Nat. Phys. (2)

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
[CrossRef]

H. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B82(11), 115418 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010).
[CrossRef] [PubMed]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A super-periodic nanohole array with a small nanohole period and a large grating super-period. (b) Calculated zeroth order transmittance (black dashed line curve) and the first order diffraction (solid red line curve) from a super-period metal nanohole array.

Fig. 2
Fig. 2

Electric field intensity distribution profiles on the near field plane of 20 nm above the metal surface at: (a) 750.5 nm wavelength (top) and (b) 760.5 nm wavelength (bottom).

Fig. 3
Fig. 3

(a) Near electric field intensity versus the wavelength at the top center of the inner nanohole apertures within the super-period unit cell. (b) Near electric field intensity versus the wavelength at the top center of the outer nanohole apertures within the super-period unit cell.

Fig. 4
Fig. 4

A SEM picture of the e-beam patterned super-period nanohole array in a thin gold film.

Fig. 5
Fig. 5

Spatially dispersed first order diffraction images captured by a CCD when the super-period metal nanohole array device area was exposed to: (a) the air, (b) the methanol, and (c) the isopropyl-alcohol.

Fig. 6
Fig. 6

Measured surface plasmon resonance spectra when different liquid chemicals are applied to the super-period gold nanohole array surface: (a) the zeroth order transmission spectra measured by using a commercial spectrometer and (b) the first order diffraction spectra obtained by using our integrated surface plasmon resonance spectrometer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin( θ )= x d 2 + x 2 = λ P ,

Metrics