Abstract

We investigate the directive radiation at 1550 nm from an optical leaky wave antenna (OLWA) with semiconductor perturbations made of silicon (Si). We study the radiation pattern dependence on the physical dimensions, number of perturbations and carrier densities in these semiconductor perturbations through optical excitations at a visible wavelength, 625 nm. In this detailed theoretical study we show the correlation between the pump power absorbed in the perturbations, the signal guided in the waveguide and the radiation through leakage. To overcome the limited control of the radiation intensity through excess carrier generation in Si, we present a new design with the OLWA integrated with a Fabry-Pérot resonator (FPR). We provide analytical and numerical studies of the enhanced radiation performance of the OLWA antenna inside the FPR, and derive closed-form formulas accounting for LW reflection at the edges of the FPR. A discussion on the constructive and destructive radiation by the direct and reflected leaky waves in the FPR resonator is provided. Results shown in this paper exhibit 3 dB variation of the radiation and pave the way for further optimization and theoretical developments.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
    [CrossRef] [PubMed]
  2. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express16(25), 20295–20305 (2008).
    [CrossRef] [PubMed]
  3. Q. Song, F. Qian, E. K. Tien, I. Tomov, J. Meyer, X. Z. Sang, and O. Boyraz, “Imaging by silicon on insulator waveguides,” Appl. Phys. Lett.94(23), 231101 (2009).
    [CrossRef]
  4. Q. Song, S. Campione, O. Boyraz, and F. Capolino, “Silicon-based optical leaky wave antenna with narrow beam radiation,” Opt. Express19(9), 8735–8749 (2011).
    [CrossRef] [PubMed]
  5. A. A. Oliner, “Leaky-wave antennas,” in Antenna Engineering Handbook, R. C.Johnson, ed. (McGraw Hill, 1993).
  6. D. R. Jackson and A. A. Oliner, “Leaky-wave antennas,” in Modern Antenna Handbook, C. A. Balanis, ed. (Wiley, 2008), 325–367.
  7. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Opt. Express16(26), 21271–21281 (2008).
    [CrossRef] [PubMed]
  8. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett.34(9), 1477–1479 (2009).
    [CrossRef] [PubMed]
  9. E. K. Tien, X. Z. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett.95(5), 051101 (2009).
    [CrossRef]
  10. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009).
    [CrossRef] [PubMed]
  11. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).
  12. O. Boyraz, X. Sang, E. Tien, Q. Song, F. Qian, and M. Akdas, “Silicon based optical pulse shaping and characterization,” Proc. SPIE7212, 72120U, 72120U–13 (2009).
    [CrossRef]
  13. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett.86(7), 071115 (2005).
    [CrossRef]
  14. Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
    [CrossRef] [PubMed]
  15. T. Dittrich, T. Bitzer, T. Rada, V. Y. Timoshenko, and J. Rappich, “Non-radiative recombination at reconstructed Si surfaces,” Solid-State Electron.46(11), 1863–1872 (2002).
    [CrossRef]
  16. F. M. Schuurmans, A. Schonecker, J. A. Eikelboom, and W. C. Sinke, “Crystal-orientation dependence of surface recombination velocity for silicon nitride passivated silicon wafers,” in Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE(1996), 485–488.
  17. S. Paulotto, P. Baccarelli, F. Frezza, and D. R. Jackson, “A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas,” IEEE Trans. Antenn. Propag.57(7), 1894–1906 (2009).
    [CrossRef]

2011

Q. Song, S. Campione, O. Boyraz, and F. Capolino, “Silicon-based optical leaky wave antenna with narrow beam radiation,” Opt. Express19(9), 8735–8749 (2011).
[CrossRef] [PubMed]

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

2009

Q. Song, F. Qian, E. K. Tien, I. Tomov, J. Meyer, X. Z. Sang, and O. Boyraz, “Imaging by silicon on insulator waveguides,” Appl. Phys. Lett.94(23), 231101 (2009).
[CrossRef]

S. Paulotto, P. Baccarelli, F. Frezza, and D. R. Jackson, “A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas,” IEEE Trans. Antenn. Propag.57(7), 1894–1906 (2009).
[CrossRef]

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett.34(9), 1477–1479 (2009).
[CrossRef] [PubMed]

E. K. Tien, X. Z. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett.95(5), 051101 (2009).
[CrossRef]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

O. Boyraz, X. Sang, E. Tien, Q. Song, F. Qian, and M. Akdas, “Silicon based optical pulse shaping and characterization,” Proc. SPIE7212, 72120U, 72120U–13 (2009).
[CrossRef]

2008

2005

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett.86(7), 071115 (2005).
[CrossRef]

2002

T. Dittrich, T. Bitzer, T. Rada, V. Y. Timoshenko, and J. Rappich, “Non-radiative recombination at reconstructed Si surfaces,” Solid-State Electron.46(11), 1863–1872 (2002).
[CrossRef]

Akdas, M.

O. Boyraz, X. Sang, E. Tien, Q. Song, F. Qian, and M. Akdas, “Silicon based optical pulse shaping and characterization,” Proc. SPIE7212, 72120U, 72120U–13 (2009).
[CrossRef]

Baccarelli, P.

S. Paulotto, P. Baccarelli, F. Frezza, and D. R. Jackson, “A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas,” IEEE Trans. Antenn. Propag.57(7), 1894–1906 (2009).
[CrossRef]

Baets, R.

Bitzer, T.

T. Dittrich, T. Bitzer, T. Rada, V. Y. Timoshenko, and J. Rappich, “Non-radiative recombination at reconstructed Si surfaces,” Solid-State Electron.46(11), 1863–1872 (2002).
[CrossRef]

Bogaerts, W.

Boreman, G. D.

Boyraz, O.

Q. Song, S. Campione, O. Boyraz, and F. Capolino, “Silicon-based optical leaky wave antenna with narrow beam radiation,” Opt. Express19(9), 8735–8749 (2011).
[CrossRef] [PubMed]

E. K. Tien, X. Z. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett.95(5), 051101 (2009).
[CrossRef]

Q. Song, F. Qian, E. K. Tien, I. Tomov, J. Meyer, X. Z. Sang, and O. Boyraz, “Imaging by silicon on insulator waveguides,” Appl. Phys. Lett.94(23), 231101 (2009).
[CrossRef]

O. Boyraz, X. Sang, E. Tien, Q. Song, F. Qian, and M. Akdas, “Silicon based optical pulse shaping and characterization,” Proc. SPIE7212, 72120U, 72120U–13 (2009).
[CrossRef]

Campione, S.

Capolino, F.

Chen, J.

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

Claps, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett.86(7), 071115 (2005).
[CrossRef]

Crozier, K. B.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Dan, Y.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Dimitropoulos, D.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett.86(7), 071115 (2005).
[CrossRef]

Dittrich, T.

T. Dittrich, T. Bitzer, T. Rada, V. Y. Timoshenko, and J. Rappich, “Non-radiative recombination at reconstructed Si surfaces,” Solid-State Electron.46(11), 1863–1872 (2002).
[CrossRef]

Frezza, F.

S. Paulotto, P. Baccarelli, F. Frezza, and D. R. Jackson, “A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas,” IEEE Trans. Antenn. Propag.57(7), 1894–1906 (2009).
[CrossRef]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

Gondarenko, A.

Houdré, R.

Jackson, D. R.

S. Paulotto, P. Baccarelli, F. Frezza, and D. R. Jackson, “A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas,” IEEE Trans. Antenn. Propag.57(7), 1894–1906 (2009).
[CrossRef]

D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Opt. Express16(26), 21271–21281 (2008).
[CrossRef] [PubMed]

Jágerská, J.

Jalali, B.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett.86(7), 071115 (2005).
[CrossRef]

Javey, A.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Jhaveri, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett.86(7), 071115 (2005).
[CrossRef]

Jones, A. C.

Krenz, P. M.

Le Thomas, N.

Levy, J. S.

Lipson, M.

Meyer, J.

Q. Song, F. Qian, E. K. Tien, I. Tomov, J. Meyer, X. Z. Sang, and O. Boyraz, “Imaging by silicon on insulator waveguides,” Appl. Phys. Lett.94(23), 231101 (2009).
[CrossRef]

Meza, J. H.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Oliner, A. A.

Olmon, R. L.

Paulotto, S.

S. Paulotto, P. Baccarelli, F. Frezza, and D. R. Jackson, “A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas,” IEEE Trans. Antenn. Propag.57(7), 1894–1906 (2009).
[CrossRef]

Qian, F.

O. Boyraz, X. Sang, E. Tien, Q. Song, F. Qian, and M. Akdas, “Silicon based optical pulse shaping and characterization,” Proc. SPIE7212, 72120U, 72120U–13 (2009).
[CrossRef]

Q. Song, F. Qian, E. K. Tien, I. Tomov, J. Meyer, X. Z. Sang, and O. Boyraz, “Imaging by silicon on insulator waveguides,” Appl. Phys. Lett.94(23), 231101 (2009).
[CrossRef]

Qiang, R.

Qing, F.

E. K. Tien, X. Z. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett.95(5), 051101 (2009).
[CrossRef]

Quidant, R.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

Rada, T.

T. Dittrich, T. Bitzer, T. Rada, V. Y. Timoshenko, and J. Rappich, “Non-radiative recombination at reconstructed Si surfaces,” Solid-State Electron.46(11), 1863–1872 (2002).
[CrossRef]

Rappich, J.

T. Dittrich, T. Bitzer, T. Rada, V. Y. Timoshenko, and J. Rappich, “Non-radiative recombination at reconstructed Si surfaces,” Solid-State Electron.46(11), 1863–1872 (2002).
[CrossRef]

Raschke, M. B.

Sang, X.

O. Boyraz, X. Sang, E. Tien, Q. Song, F. Qian, and M. Akdas, “Silicon based optical pulse shaping and characterization,” Proc. SPIE7212, 72120U, 72120U–13 (2009).
[CrossRef]

Sang, X. Z.

Q. Song, F. Qian, E. K. Tien, I. Tomov, J. Meyer, X. Z. Sang, and O. Boyraz, “Imaging by silicon on insulator waveguides,” Appl. Phys. Lett.94(23), 231101 (2009).
[CrossRef]

E. K. Tien, X. Z. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett.95(5), 051101 (2009).
[CrossRef]

Seo, K.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Song, Q.

Q. Song, S. Campione, O. Boyraz, and F. Capolino, “Silicon-based optical leaky wave antenna with narrow beam radiation,” Opt. Express19(9), 8735–8749 (2011).
[CrossRef] [PubMed]

Q. Song, F. Qian, E. K. Tien, I. Tomov, J. Meyer, X. Z. Sang, and O. Boyraz, “Imaging by silicon on insulator waveguides,” Appl. Phys. Lett.94(23), 231101 (2009).
[CrossRef]

E. K. Tien, X. Z. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett.95(5), 051101 (2009).
[CrossRef]

O. Boyraz, X. Sang, E. Tien, Q. Song, F. Qian, and M. Akdas, “Silicon based optical pulse shaping and characterization,” Proc. SPIE7212, 72120U, 72120U–13 (2009).
[CrossRef]

Takei, K.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Taminiau, T. H.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

Tien, E.

O. Boyraz, X. Sang, E. Tien, Q. Song, F. Qian, and M. Akdas, “Silicon based optical pulse shaping and characterization,” Proc. SPIE7212, 72120U, 72120U–13 (2009).
[CrossRef]

Tien, E. K.

Q. Song, F. Qian, E. K. Tien, I. Tomov, J. Meyer, X. Z. Sang, and O. Boyraz, “Imaging by silicon on insulator waveguides,” Appl. Phys. Lett.94(23), 231101 (2009).
[CrossRef]

E. K. Tien, X. Z. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett.95(5), 051101 (2009).
[CrossRef]

Timoshenko, V. Y.

T. Dittrich, T. Bitzer, T. Rada, V. Y. Timoshenko, and J. Rappich, “Non-radiative recombination at reconstructed Si surfaces,” Solid-State Electron.46(11), 1863–1872 (2002).
[CrossRef]

Tomov, I.

Q. Song, F. Qian, E. K. Tien, I. Tomov, J. Meyer, X. Z. Sang, and O. Boyraz, “Imaging by silicon on insulator waveguides,” Appl. Phys. Lett.94(23), 231101 (2009).
[CrossRef]

Van Acoleyen, K.

van Hulst, N. F.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

Woo, J. C. S.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett.86(7), 071115 (2005).
[CrossRef]

Appl. Phys. Lett.

Q. Song, F. Qian, E. K. Tien, I. Tomov, J. Meyer, X. Z. Sang, and O. Boyraz, “Imaging by silicon on insulator waveguides,” Appl. Phys. Lett.94(23), 231101 (2009).
[CrossRef]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett.86(7), 071115 (2005).
[CrossRef]

E. K. Tien, X. Z. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett.95(5), 051101 (2009).
[CrossRef]

IEEE Trans. Antenn. Propag.

S. Paulotto, P. Baccarelli, F. Frezza, and D. R. Jackson, “A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas,” IEEE Trans. Antenn. Propag.57(7), 1894–1906 (2009).
[CrossRef]

Nano Lett.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

Proc. SPIE

O. Boyraz, X. Sang, E. Tien, Q. Song, F. Qian, and M. Akdas, “Silicon based optical pulse shaping and characterization,” Proc. SPIE7212, 72120U, 72120U–13 (2009).
[CrossRef]

Solid-State Electron.

T. Dittrich, T. Bitzer, T. Rada, V. Y. Timoshenko, and J. Rappich, “Non-radiative recombination at reconstructed Si surfaces,” Solid-State Electron.46(11), 1863–1872 (2002).
[CrossRef]

Other

F. M. Schuurmans, A. Schonecker, J. A. Eikelboom, and W. C. Sinke, “Crystal-orientation dependence of surface recombination velocity for silicon nitride passivated silicon wafers,” in Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE(1996), 485–488.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).

A. A. Oliner, “Leaky-wave antennas,” in Antenna Engineering Handbook, R. C.Johnson, ed. (McGraw Hill, 1993).

D. R. Jackson and A. A. Oliner, “Leaky-wave antennas,” in Modern Antenna Handbook, C. A. Balanis, ed. (Wiley, 2008), 325–367.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

2D model of the proposed OLWA, including dimensions, and the optical pumping scheme.

Fig. 2
Fig. 2

Normalized radiation pattern at (a) signal and (b) pump wavelengths, for Set 1. Result retrieved with COMSOL. A similar plot is attainable for Set 2 (not shown). Maximum signal radiation is at ϕ M =93.4° .

Fig. 3
Fig. 3

Scattering parameters and half power beamwidth (HPBW) versus number of perturbations N for Set 1 and Set 2. Results retrieved with COMSOL (in agreement with HFSS, not shown for clarity).

Fig. 5
Fig. 5

Guided (delivered to a cell), radiated and absorbed (inside the Si perturbation) power at 625 nm versus cell number, in case of (a) single and (b) bidirectional pump schemes for Set 1. A similar plot is attainable for Set 2 (not shown). Result retrieved with full-wave simulator HFSS (in agreement with COMSOL, not shown for clarity).

Fig. 7
Fig. 7

Radiation pattern in absence and in presence of optical pumping that provides the excess carrier concentrations N e = N h given in the legend (in cm−3). Agreement between (a) COMSOL and (b) HFSS full-wave simulations. The insets show the limited variation in radiation (fraction of a dB) caused by the excess carriers.

Fig. 4
Fig. 4

Unit cell of the waveguide in Fig. 1, showing the Si perturbation.

Fig. 6
Fig. 6

Excess carrier concentration versus cell number for (a) single and (b) bidirectional pump schemes for Set 1, obtained by both COMSOL and HFSS simulations. A similar plot is attainable for Set 2 (not shown).

Fig. 8
Fig. 8

OLWA embedded into a Fabry-Pérot resonator limited by two partially reflective mirrors. The distances D 1 and D 2 need to be carefully determined using LW theory, in such a way that the two LWs traveling in opposite directions in the OLWA section produce beams with constructive interference.

Fig. 9
Fig. 9

Radiation pattern of an OLWA embedded into an FPR with (dashed black) and without (solid red) excess carrier injection in the Si perturbations using three different designs: (a) Set 1, (b) Set 2, and (c) Potential Case.

Tables (1)

Tables Icon

Table 1 Parameters of the OLWA Designs Integrated into FPR

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

D= max[ U( ϕ ) ] 1 2π 0 2π U( ϕ )dϕ
Δ n Si ( N e , N h )=( 8.8× 10 4 N e +8.5 N h 0.8 )× 10 18 , Δ k Si ( N e , N h )=( 8.5 N e +6.0 N h )× 10 16 / k S ,
N e = N h = P abs,Si ω × τ V ,
A Sn dl= A ( G n τ b ) dA
S Si-SiO 2 nl+ S Si-Si 3 N 4 n( 2h+l )=( G n τ b )lh,
1 τ = 1 τ b + S Si-SiO 2 h + S Si-Si 3 N 4 ( 2h+l ) lh .
E + ( x )= f FPR E( x ), E ( x )= f FPR Γ 0 E( x ),
E( x )= E 0 e αx e i β 1 x , Γ 0 = Γ 2 e αNd e i β 1 Nd e iβ2 D 2 .
f FPR = 1 1 Γ 1 Γ 2 e 2αNd e 2i β 1 Nd e 2iβ( D 1 + D 2 ) .
E FF T ( ρ,ϕ )= f FPR [ E FF + ( ρ,ϕ )+ Γ 0 E FF ( ρ,ϕ ) ].
F ± ( ϕ )= E 0 e iπ/4 k S 2π Ndsinϕ sin ψ ± ψ ±
ψ ± =( k S cosϕ β 1 iα )Nd/2,
F T ( ϕ )= f FPR [ F + ( ϕ )+ Γ 0 F ( ϕ ) ],

Metrics