Abstract

InSb-based quantum dots grown by metal-organic vapor-phase epitaxy (MOVPE) on InAs substrates are studied for use as the active material in interband photon detectors. Long-wavelength infrared (LWIR) photoluminescence is demonstrated with peak emission at 8.5 µm and photoresponse, interpreted to originate from type-II interband transitions in a p-i-n photodiode, was measured up to 6 µm, both at 80 K. The possibilities and benefits of operation in the LWIR range (8-12 µm) are discussed and the results suggest that InSb-based quantum dot structures can be suitable candidates for photon detection in the LWIR regime.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, “Material considerations for third generation infrared photon detectors,” Infrared Phys. Technol.50(2-3), 240–252 (2007).
    [CrossRef]
  2. D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
    [CrossRef]
  3. S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, and S. W. Kennerly, “Heterostructures for achieving large responsivity in InAs/GaAs quantum dot infrared photodetectors,” J. Vac. Sci. Technol. B22(3), 1499–1502 (2004).
    [CrossRef]
  4. M. Razeghi, W. Zhang, H.-C. Lim, S. Tsao, J. Szafraniec, M. Taguchi, and B. Movaghar, “Focal plane arrays based on Quantum Dot Infrared Photodetectors,” Proc. SPIE5838, 125–136 (2005).
    [CrossRef]
  5. A. V. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
    [CrossRef]
  6. L. Fu, P. Lever, K. Sears, H. H. Tan, and C. Jagadish, “In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Electron Device Lett.26(9), 628–630 (2005).
    [CrossRef]
  7. D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys.62(6), 2545–2548 (1987).
    [CrossRef]
  8. C. J. Hill, J. V. Li, J. M. Mumolo, and S. D. Gunapala, “MBE grown type-II MWIR and LWIR superlattice photodiodes,” Infrared Phys. Technol.50(2-3), 187–190 (2007).
    [CrossRef]
  9. S. Bogdanov, B. Nguyen, A. M. Hoang, and M. Razeghi, “Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes,” Appl. Phys. Lett.98(18), 183501 (2011).
    [CrossRef]
  10. N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011).
    [CrossRef]
  11. C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths,” Electron. Lett.46(18), 1286–1287 (2010).
    [CrossRef]
  12. A. G. Norman, N. J. Mason, M. J. Fisher, J. Richardson, A. Krier, P. J. Walker, and G. R. Booker, Structural and optical characterization of MOVPE self-assembled InSb quantum dots in InAs and GaSb matrices,” in Inst. Phys. Conf. Ser. No. 157 353–356 (1997).
  13. P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett.93(9), 091101 (2008).
    [CrossRef]
  14. A. Krier, X. L. Huang, and A. Hammiche, “Liquid phase epitaxial growth and morphology of InSb quantum dots,” J. Phys. D Appl. Phys.34(6), 874–878 (2001).
    [CrossRef]
  15. P. J. Carrington, V. A. Solovev, Q. Zhuang, S. V. Ivanov, and A. Krier, “InSb quantum dot LEDs grown by molecular beam epitaxy for mid-infrared applications,” Microelectron. J.40(3), 469–472 (2009).
    [CrossRef]
  16. V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
    [CrossRef]
  17. J. Weissenrieder, M. Göthelid, G. Le Lay, and U. O. Karlsson, “Investigation of the surface phase diagram of Fe(1 1 0)–S,” Surf. Sci.515(1), 135–142 (2002).
    [CrossRef]
  18. M. Fisher and A. Krier, “Photoluminescence of epitaxial InAs produced by different growth methods,” Infrared Phys. Technol.38(7), 405–413 (1997).
    [CrossRef]
  19. C. Pryor and M.-E. Pistol, “Band-edge diagrams for strained III–V semiconductor quantum wells, wires, and dots,” Phys. Rev. B72(20), 1–11 (2005).
    [CrossRef]
  20. D. Z. Ting, A. Soibel, C. J. Hill, S. A. Keo, J. M. Mumolo, and S. D. Gunapala, “High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD),” Proc. SPIE8353, 835332, 835332-8 (2012).
    [CrossRef]
  21. S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
    [CrossRef]

2012 (1)

D. Z. Ting, A. Soibel, C. J. Hill, S. A. Keo, J. M. Mumolo, and S. D. Gunapala, “High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD),” Proc. SPIE8353, 835332, 835332-8 (2012).
[CrossRef]

2011 (2)

S. Bogdanov, B. Nguyen, A. M. Hoang, and M. Razeghi, “Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes,” Appl. Phys. Lett.98(18), 183501 (2011).
[CrossRef]

N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011).
[CrossRef]

2010 (2)

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths,” Electron. Lett.46(18), 1286–1287 (2010).
[CrossRef]

A. V. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

2009 (2)

P. J. Carrington, V. A. Solovev, Q. Zhuang, S. V. Ivanov, and A. Krier, “InSb quantum dot LEDs grown by molecular beam epitaxy for mid-infrared applications,” Microelectron. J.40(3), 469–472 (2009).
[CrossRef]

D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

2008 (1)

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett.93(9), 091101 (2008).
[CrossRef]

2007 (2)

A. Rogalski, “Material considerations for third generation infrared photon detectors,” Infrared Phys. Technol.50(2-3), 240–252 (2007).
[CrossRef]

C. J. Hill, J. V. Li, J. M. Mumolo, and S. D. Gunapala, “MBE grown type-II MWIR and LWIR superlattice photodiodes,” Infrared Phys. Technol.50(2-3), 187–190 (2007).
[CrossRef]

2005 (5)

C. Pryor and M.-E. Pistol, “Band-edge diagrams for strained III–V semiconductor quantum wells, wires, and dots,” Phys. Rev. B72(20), 1–11 (2005).
[CrossRef]

L. Fu, P. Lever, K. Sears, H. H. Tan, and C. Jagadish, “In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Electron Device Lett.26(9), 628–630 (2005).
[CrossRef]

V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
[CrossRef]

M. Razeghi, W. Zhang, H.-C. Lim, S. Tsao, J. Szafraniec, M. Taguchi, and B. Movaghar, “Focal plane arrays based on Quantum Dot Infrared Photodetectors,” Proc. SPIE5838, 125–136 (2005).
[CrossRef]

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

2004 (1)

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, and S. W. Kennerly, “Heterostructures for achieving large responsivity in InAs/GaAs quantum dot infrared photodetectors,” J. Vac. Sci. Technol. B22(3), 1499–1502 (2004).
[CrossRef]

2002 (1)

J. Weissenrieder, M. Göthelid, G. Le Lay, and U. O. Karlsson, “Investigation of the surface phase diagram of Fe(1 1 0)–S,” Surf. Sci.515(1), 135–142 (2002).
[CrossRef]

2001 (1)

A. Krier, X. L. Huang, and A. Hammiche, “Liquid phase epitaxial growth and morphology of InSb quantum dots,” J. Phys. D Appl. Phys.34(6), 874–878 (2001).
[CrossRef]

1997 (1)

M. Fisher and A. Krier, “Photoluminescence of epitaxial InAs produced by different growth methods,” Infrared Phys. Technol.38(7), 405–413 (1997).
[CrossRef]

1987 (1)

D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys.62(6), 2545–2548 (1987).
[CrossRef]

Bandara, S. V.

D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Barve, A. V.

A. V. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

Bhattacharya, P.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, and S. W. Kennerly, “Heterostructures for achieving large responsivity in InAs/GaAs quantum dot infrared photodetectors,” J. Vac. Sci. Technol. B22(3), 1499–1502 (2004).
[CrossRef]

Blazejewski, E. R.

D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Bogdanov, S.

S. Bogdanov, B. Nguyen, A. M. Hoang, and M. Razeghi, “Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes,” Appl. Phys. Lett.98(18), 183501 (2011).
[CrossRef]

Carrington, P. J.

P. J. Carrington, V. A. Solovev, Q. Zhuang, S. V. Ivanov, and A. Krier, “InSb quantum dot LEDs grown by molecular beam epitaxy for mid-infrared applications,” Microelectron. J.40(3), 469–472 (2009).
[CrossRef]

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett.93(9), 091101 (2008).
[CrossRef]

Chakrabarti, S.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, and S. W. Kennerly, “Heterostructures for achieving large responsivity in InAs/GaAs quantum dot infrared photodetectors,” J. Vac. Sci. Technol. B22(3), 1499–1502 (2004).
[CrossRef]

Chang, Y.-C.

D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Dawson, L. R.

N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011).
[CrossRef]

Fisher, M.

M. Fisher and A. Krier, “Photoluminescence of epitaxial InAs produced by different growth methods,” Infrared Phys. Technol.38(7), 405–413 (1997).
[CrossRef]

Fu, L.

L. Fu, P. Lever, K. Sears, H. H. Tan, and C. Jagadish, “In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Electron Device Lett.26(9), 628–630 (2005).
[CrossRef]

Gautam, N.

N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011).
[CrossRef]

Göthelid, M.

J. Weissenrieder, M. Göthelid, G. Le Lay, and U. O. Karlsson, “Investigation of the surface phase diagram of Fe(1 1 0)–S,” Surf. Sci.515(1), 135–142 (2002).
[CrossRef]

Gunapala, S. D.

D. Z. Ting, A. Soibel, C. J. Hill, S. A. Keo, J. M. Mumolo, and S. D. Gunapala, “High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD),” Proc. SPIE8353, 835332, 835332-8 (2012).
[CrossRef]

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths,” Electron. Lett.46(18), 1286–1287 (2010).
[CrossRef]

D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

C. J. Hill, J. V. Li, J. M. Mumolo, and S. D. Gunapala, “MBE grown type-II MWIR and LWIR superlattice photodiodes,” Infrared Phys. Technol.50(2-3), 187–190 (2007).
[CrossRef]

Hammiche, A.

A. Krier, X. L. Huang, and A. Hammiche, “Liquid phase epitaxial growth and morphology of InSb quantum dots,” J. Phys. D Appl. Phys.34(6), 874–878 (2001).
[CrossRef]

Hill, C. J.

D. Z. Ting, A. Soibel, C. J. Hill, S. A. Keo, J. M. Mumolo, and S. D. Gunapala, “High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD),” Proc. SPIE8353, 835332, 835332-8 (2012).
[CrossRef]

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths,” Electron. Lett.46(18), 1286–1287 (2010).
[CrossRef]

D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

C. J. Hill, J. V. Li, J. M. Mumolo, and S. D. Gunapala, “MBE grown type-II MWIR and LWIR superlattice photodiodes,” Infrared Phys. Technol.50(2-3), 187–190 (2007).
[CrossRef]

Hoang, A. M.

S. Bogdanov, B. Nguyen, A. M. Hoang, and M. Razeghi, “Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes,” Appl. Phys. Lett.98(18), 183501 (2011).
[CrossRef]

Huang, X. L.

A. Krier, X. L. Huang, and A. Hammiche, “Liquid phase epitaxial growth and morphology of InSb quantum dots,” J. Phys. D Appl. Phys.34(6), 874–878 (2001).
[CrossRef]

Ivanov, S.

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

Ivanov, S. V.

P. J. Carrington, V. A. Solovev, Q. Zhuang, S. V. Ivanov, and A. Krier, “InSb quantum dot LEDs grown by molecular beam epitaxy for mid-infrared applications,” Microelectron. J.40(3), 469–472 (2009).
[CrossRef]

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett.93(9), 091101 (2008).
[CrossRef]

V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
[CrossRef]

Jagadish, C.

L. Fu, P. Lever, K. Sears, H. H. Tan, and C. Jagadish, “In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Electron Device Lett.26(9), 628–630 (2005).
[CrossRef]

Karlsson, U. O.

J. Weissenrieder, M. Göthelid, G. Le Lay, and U. O. Karlsson, “Investigation of the surface phase diagram of Fe(1 1 0)–S,” Surf. Sci.515(1), 135–142 (2002).
[CrossRef]

Kennerly, S. W.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, and S. W. Kennerly, “Heterostructures for achieving large responsivity in InAs/GaAs quantum dot infrared photodetectors,” J. Vac. Sci. Technol. B22(3), 1499–1502 (2004).
[CrossRef]

Keo, S. A.

D. Z. Ting, A. Soibel, C. J. Hill, S. A. Keo, J. M. Mumolo, and S. D. Gunapala, “High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD),” Proc. SPIE8353, 835332, 835332-8 (2012).
[CrossRef]

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths,” Electron. Lett.46(18), 1286–1287 (2010).
[CrossRef]

D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Kim, H. S.

N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011).
[CrossRef]

Klein, B.

N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011).
[CrossRef]

Kop’ev, P. S.

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

Kopev, P. S.

V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
[CrossRef]

Krier, A.

P. J. Carrington, V. A. Solovev, Q. Zhuang, S. V. Ivanov, and A. Krier, “InSb quantum dot LEDs grown by molecular beam epitaxy for mid-infrared applications,” Microelectron. J.40(3), 469–472 (2009).
[CrossRef]

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett.93(9), 091101 (2008).
[CrossRef]

A. Krier, X. L. Huang, and A. Hammiche, “Liquid phase epitaxial growth and morphology of InSb quantum dots,” J. Phys. D Appl. Phys.34(6), 874–878 (2001).
[CrossRef]

M. Fisher and A. Krier, “Photoluminescence of epitaxial InAs produced by different growth methods,” Infrared Phys. Technol.38(7), 405–413 (1997).
[CrossRef]

Krishna, S.

N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011).
[CrossRef]

A. V. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

Kutty, M. N.

N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011).
[CrossRef]

Le Lay, G.

J. Weissenrieder, M. Göthelid, G. Le Lay, and U. O. Karlsson, “Investigation of the surface phase diagram of Fe(1 1 0)–S,” Surf. Sci.515(1), 135–142 (2002).
[CrossRef]

Lee, S. J.

A. V. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

Lever, P.

L. Fu, P. Lever, K. Sears, H. H. Tan, and C. Jagadish, “In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Electron Device Lett.26(9), 628–630 (2005).
[CrossRef]

Li, J. V.

C. J. Hill, J. V. Li, J. M. Mumolo, and S. D. Gunapala, “MBE grown type-II MWIR and LWIR superlattice photodiodes,” Infrared Phys. Technol.50(2-3), 187–190 (2007).
[CrossRef]

Lim, H.-C.

M. Razeghi, W. Zhang, H.-C. Lim, S. Tsao, J. Szafraniec, M. Taguchi, and B. Movaghar, “Focal plane arrays based on Quantum Dot Infrared Photodetectors,” Proc. SPIE5838, 125–136 (2005).
[CrossRef]

Liu, J. K.

D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Lyublinskaya, O.

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

Lyublinskaya, O. G.

V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
[CrossRef]

Mailhiot, C.

D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys.62(6), 2545–2548 (1987).
[CrossRef]

Meltser, B.

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

Meltser, B. Y.

V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
[CrossRef]

Movaghar, B.

M. Razeghi, W. Zhang, H.-C. Lim, S. Tsao, J. Szafraniec, M. Taguchi, and B. Movaghar, “Focal plane arrays based on Quantum Dot Infrared Photodetectors,” Proc. SPIE5838, 125–136 (2005).
[CrossRef]

Mumolo, J. M.

D. Z. Ting, A. Soibel, C. J. Hill, S. A. Keo, J. M. Mumolo, and S. D. Gunapala, “High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD),” Proc. SPIE8353, 835332, 835332-8 (2012).
[CrossRef]

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths,” Electron. Lett.46(18), 1286–1287 (2010).
[CrossRef]

D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

C. J. Hill, J. V. Li, J. M. Mumolo, and S. D. Gunapala, “MBE grown type-II MWIR and LWIR superlattice photodiodes,” Infrared Phys. Technol.50(2-3), 187–190 (2007).
[CrossRef]

Myers, S.

N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011).
[CrossRef]

Naydenkov, M.

N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011).
[CrossRef]

Nguyen, B.

S. Bogdanov, B. Nguyen, A. M. Hoang, and M. Razeghi, “Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes,” Appl. Phys. Lett.98(18), 183501 (2011).
[CrossRef]

Noh, S. K.

A. V. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

Pistol, M.-E.

C. Pryor and M.-E. Pistol, “Band-edge diagrams for strained III–V semiconductor quantum wells, wires, and dots,” Phys. Rev. B72(20), 1–11 (2005).
[CrossRef]

Plis, E.

N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011).
[CrossRef]

Prokopova, L.

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

Prokopova, L. A.

V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
[CrossRef]

Pryor, C.

C. Pryor and M.-E. Pistol, “Band-edge diagrams for strained III–V semiconductor quantum wells, wires, and dots,” Phys. Rev. B72(20), 1–11 (2005).
[CrossRef]

Rafol, S. B.

D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Razeghi, M.

S. Bogdanov, B. Nguyen, A. M. Hoang, and M. Razeghi, “Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes,” Appl. Phys. Lett.98(18), 183501 (2011).
[CrossRef]

M. Razeghi, W. Zhang, H.-C. Lim, S. Tsao, J. Szafraniec, M. Taguchi, and B. Movaghar, “Focal plane arrays based on Quantum Dot Infrared Photodetectors,” Proc. SPIE5838, 125–136 (2005).
[CrossRef]

Rogalski, A.

A. Rogalski, “Material considerations for third generation infrared photon detectors,” Infrared Phys. Technol.50(2-3), 240–252 (2007).
[CrossRef]

Rotter, T.

A. V. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

Sears, K.

L. Fu, P. Lever, K. Sears, H. H. Tan, and C. Jagadish, “In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Electron Device Lett.26(9), 628–630 (2005).
[CrossRef]

Semenov, A.

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

Semenov, A. N.

V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
[CrossRef]

Sharma, Y.

A. V. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

Sitnikova, A.

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

Smith, D. L.

D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys.62(6), 2545–2548 (1987).
[CrossRef]

Soibel, A.

D. Z. Ting, A. Soibel, C. J. Hill, S. A. Keo, J. M. Mumolo, and S. D. Gunapala, “High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD),” Proc. SPIE8353, 835332, 835332-8 (2012).
[CrossRef]

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths,” Electron. Lett.46(18), 1286–1287 (2010).
[CrossRef]

Solnyshkov, D. D.

V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
[CrossRef]

Solov’ev, V. A.

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett.93(9), 091101 (2008).
[CrossRef]

Solovev, V.

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

Solovev, V. A.

P. J. Carrington, V. A. Solovev, Q. Zhuang, S. V. Ivanov, and A. Krier, “InSb quantum dot LEDs grown by molecular beam epitaxy for mid-infrared applications,” Microelectron. J.40(3), 469–472 (2009).
[CrossRef]

V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
[CrossRef]

Stiff-Roberts, A. D.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, and S. W. Kennerly, “Heterostructures for achieving large responsivity in InAs/GaAs quantum dot infrared photodetectors,” J. Vac. Sci. Technol. B22(3), 1499–1502 (2004).
[CrossRef]

Szafraniec, J.

M. Razeghi, W. Zhang, H.-C. Lim, S. Tsao, J. Szafraniec, M. Taguchi, and B. Movaghar, “Focal plane arrays based on Quantum Dot Infrared Photodetectors,” Proc. SPIE5838, 125–136 (2005).
[CrossRef]

Taguchi, M.

M. Razeghi, W. Zhang, H.-C. Lim, S. Tsao, J. Szafraniec, M. Taguchi, and B. Movaghar, “Focal plane arrays based on Quantum Dot Infrared Photodetectors,” Proc. SPIE5838, 125–136 (2005).
[CrossRef]

Tan, H. H.

L. Fu, P. Lever, K. Sears, H. H. Tan, and C. Jagadish, “In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Electron Device Lett.26(9), 628–630 (2005).
[CrossRef]

Terentev, Y.

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

Terentev, Y. V.

V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
[CrossRef]

Ting, D. Z.

D. Z. Ting, A. Soibel, C. J. Hill, S. A. Keo, J. M. Mumolo, and S. D. Gunapala, “High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD),” Proc. SPIE8353, 835332, 835332-8 (2012).
[CrossRef]

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths,” Electron. Lett.46(18), 1286–1287 (2010).
[CrossRef]

D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Toropov, A.

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

Toropov, A. A.

V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
[CrossRef]

Tsao, S.

M. Razeghi, W. Zhang, H.-C. Lim, S. Tsao, J. Szafraniec, M. Taguchi, and B. Movaghar, “Focal plane arrays based on Quantum Dot Infrared Photodetectors,” Proc. SPIE5838, 125–136 (2005).
[CrossRef]

Usikova, A.

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

Weissenrieder, J.

J. Weissenrieder, M. Göthelid, G. Le Lay, and U. O. Karlsson, “Investigation of the surface phase diagram of Fe(1 1 0)–S,” Surf. Sci.515(1), 135–142 (2002).
[CrossRef]

Zhang, W.

M. Razeghi, W. Zhang, H.-C. Lim, S. Tsao, J. Szafraniec, M. Taguchi, and B. Movaghar, “Focal plane arrays based on Quantum Dot Infrared Photodetectors,” Proc. SPIE5838, 125–136 (2005).
[CrossRef]

Zhuang, Q.

P. J. Carrington, V. A. Solovev, Q. Zhuang, S. V. Ivanov, and A. Krier, “InSb quantum dot LEDs grown by molecular beam epitaxy for mid-infrared applications,” Microelectron. J.40(3), 469–472 (2009).
[CrossRef]

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett.93(9), 091101 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

A. V. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

S. Bogdanov, B. Nguyen, A. M. Hoang, and M. Razeghi, “Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes,” Appl. Phys. Lett.98(18), 183501 (2011).
[CrossRef]

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett.93(9), 091101 (2008).
[CrossRef]

V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein).
[CrossRef]

Electron Device Lett. (1)

L. Fu, P. Lever, K. Sears, H. H. Tan, and C. Jagadish, “In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Electron Device Lett.26(9), 628–630 (2005).
[CrossRef]

Electron. Lett. (1)

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths,” Electron. Lett.46(18), 1286–1287 (2010).
[CrossRef]

Infrared Phys. Technol. (4)

M. Fisher and A. Krier, “Photoluminescence of epitaxial InAs produced by different growth methods,” Infrared Phys. Technol.38(7), 405–413 (1997).
[CrossRef]

N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011).
[CrossRef]

A. Rogalski, “Material considerations for third generation infrared photon detectors,” Infrared Phys. Technol.50(2-3), 240–252 (2007).
[CrossRef]

C. J. Hill, J. V. Li, J. M. Mumolo, and S. D. Gunapala, “MBE grown type-II MWIR and LWIR superlattice photodiodes,” Infrared Phys. Technol.50(2-3), 187–190 (2007).
[CrossRef]

J. Appl. Phys. (1)

D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys.62(6), 2545–2548 (1987).
[CrossRef]

J. Cryst. Growth (1)

S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005).
[CrossRef]

J. Phys. D Appl. Phys. (1)

A. Krier, X. L. Huang, and A. Hammiche, “Liquid phase epitaxial growth and morphology of InSb quantum dots,” J. Phys. D Appl. Phys.34(6), 874–878 (2001).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, and S. W. Kennerly, “Heterostructures for achieving large responsivity in InAs/GaAs quantum dot infrared photodetectors,” J. Vac. Sci. Technol. B22(3), 1499–1502 (2004).
[CrossRef]

Microelectron. J. (1)

P. J. Carrington, V. A. Solovev, Q. Zhuang, S. V. Ivanov, and A. Krier, “InSb quantum dot LEDs grown by molecular beam epitaxy for mid-infrared applications,” Microelectron. J.40(3), 469–472 (2009).
[CrossRef]

Phys. Rev. B (1)

C. Pryor and M.-E. Pistol, “Band-edge diagrams for strained III–V semiconductor quantum wells, wires, and dots,” Phys. Rev. B72(20), 1–11 (2005).
[CrossRef]

Proc. SPIE (2)

D. Z. Ting, A. Soibel, C. J. Hill, S. A. Keo, J. M. Mumolo, and S. D. Gunapala, “High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD),” Proc. SPIE8353, 835332, 835332-8 (2012).
[CrossRef]

M. Razeghi, W. Zhang, H.-C. Lim, S. Tsao, J. Szafraniec, M. Taguchi, and B. Movaghar, “Focal plane arrays based on Quantum Dot Infrared Photodetectors,” Proc. SPIE5838, 125–136 (2005).
[CrossRef]

Surf. Sci. (1)

J. Weissenrieder, M. Göthelid, G. Le Lay, and U. O. Karlsson, “Investigation of the surface phase diagram of Fe(1 1 0)–S,” Surf. Sci.515(1), 135–142 (2002).
[CrossRef]

Other (1)

A. G. Norman, N. J. Mason, M. J. Fisher, J. Richardson, A. Krier, P. J. Walker, and G. R. Booker, Structural and optical characterization of MOVPE self-assembled InSb quantum dots in InAs and GaSb matrices,” in Inst. Phys. Conf. Ser. No. 157 353–356 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

PL measured at 77 K from single InSb QD layer samples grown at a V/III ratio of 1.6. The band energies with a type-III broken gap band alignment as calculated by Pryor and Pistol [19] are included in the inset together with the indicated type-II transition.

Fig. 2
Fig. 2

PL measured at 77 K from single InSb QD layer samples grown at different V/III input flow ratios.

Fig. 3
Fig. 3

PL measured at 77 K from single InSb QD layer samples grown at indicated temperatures in the interval 470-530 °C at a V/III ratio of 0.8 and a thickness of 5 ML.

Fig. 4
Fig. 4

PL measured at 77 K from single InSb QD layer samples grown at 470 °C with varied QD layer thickness. The dotted lines indicate the emission peaks of two possible dot size-distributions.

Fig. 5
Fig. 5

Responsivity measured in a 10 QD-layer device structure at zero bias and 80 K. The PL from a corresponding sample measured at 77 K is also presented.

Fig. 6
Fig. 6

A 35 x 35 nm2 X-STM micrograph of a 10 QD-layer sample with a QD-layer thickness of 3 ML grown at 490 ̊C with a V/III ratio of 1.6. The image was acquired with a sample bias of −0.6 V.

Fig. 7
Fig. 7

PL measured at 77 K from InGaSb QD layer samples grown with a thickness of 12 ML at a V/III ratio of 0.8 at different temperatures.

Fig. 8
Fig. 8

PL measured at 77 K from a single QD-layer In0.5Ga0.5Sb QD sample grown with a thickness of 14 ML and a V/III ratio of 1.2 at 530 °C.

Metrics