Abstract

Holoscopy is a tomographic imaging technique that combines digital holography and Fourier-domain optical coherence tomography (OCT) to gain tomograms with diffraction limited resolution and uniform sensitivity over several Rayleigh lengths. The lateral image information is calculated from the spatial interference pattern formed by light scattered from the sample and a reference beam. The depth information is obtained from the spectral dependence of the recorded digital holograms. Numerous digital holograms are acquired at different wavelengths and then reconstructed for a common plane in the sample. Afterwards standard Fourier-domain OCT signal processing achieves depth discrimination. Here we describe and demonstrate an optimized data reconstruction algorithm for holoscopy which is related to the inverse scattering reconstruction of wavelength-scanned full-field optical coherence tomography data. Instead of calculating a regularized pseudoinverse of the forward operator, the recorded optical fields are propagated back into the sample volume. In one processing step the high frequency components of the scattering potential are reconstructed on a non-equidistant grid in three-dimensional spatial frequency space. A Fourier transform yields an OCT equivalent image of the object structure. In contrast to the original holoscopy reconstruction with backpropagation and Fourier transform with respect to the wavenumber, the required processing time does neither depend on the confocal parameter nor on the depth of the volume. For an imaging NA of 0.14, the processing time was decreased by a factor of 15, at higher NA the gain in reconstruction speed may reach two orders of magnitude.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy—holographic optical coherence tomography,” Opt. Lett.36, 2390–2392 (2011).
    [CrossRef] [PubMed]
  2. D. Hillmann, C. Lhrs, T. Bonin, P. Koch, A. Vogel, and G. Httmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE8091, 80911H (2011).
    [CrossRef]
  3. J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE7139, 713908–713907 (2008).
    [CrossRef]
  4. C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express19, 12141–12155 (2011).
    [CrossRef] [PubMed]
  5. K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett.33, 1696–1698 (2008).
    [CrossRef] [PubMed]
  6. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31, 2450–2452 (2006).
    [CrossRef] [PubMed]
  7. L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett.32, 2375–2377 (2007).
    [CrossRef] [PubMed]
  8. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy:inverse scattering for optical coherence tomography,” Opt. Photon. News17, 25–25 (2006).
  9. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3, 129–134 (2007).
    [CrossRef]
  10. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express16, 2555–2569 (2008).
    [CrossRef] [PubMed]
  11. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15, 7634–7641 (2007).
    [CrossRef] [PubMed]
  12. A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Digital refocusing in optical coherence tomography,” Proc. SPIE8213, 82132C (2012).
    [CrossRef]
  13. B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express14, 7661–7669 (2006).
    [CrossRef]
  14. T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett.35, 3432–3434 (2010).
    [CrossRef] [PubMed]
  15. J. Pomarico, U. Schnars, H. J. Hartmann, and W. Juptner, “Digital recording and numerical reconstruction of holograms: a new method for displaying light in flight,” Appl. Opt.34, 8095–8099 (1995).
    [CrossRef] [PubMed]
  16. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt.41, 4489–4496 (2002).
    [CrossRef] [PubMed]
  17. J. C. Marron and T. J. Schulz, “Three-dimensional, fine-resolution imaging using laser frequency diversity,” Opt. Lett.17, 285–287 (1992).
    [CrossRef] [PubMed]
  18. M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol.19, 074010 (2008).
    [CrossRef]
  19. A. V. Zvyagin, “Fourier-domain optical coherence tomography: optimization of signal-to-noise ratio in full space,” Opt. Commun.242, 97–108 (2004).
    [CrossRef]
  20. A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A, Pure Appl. Opt.7, 350 (2005).
    [CrossRef]
  21. D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Phys. Lett.6, 753–758 (2009).
    [CrossRef]
  22. M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett.24, 1693–1695 (1999).
    [CrossRef]
  23. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt.45, 8209–8217 (2006).
    [CrossRef] [PubMed]
  24. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1, 153–156 (1969).
    [CrossRef]
  25. A. F. Fercher, “Optical coherence tomography—development, principles, applications,” Z. Med. Phys.20, 251 –276 (2010).
    [PubMed]
  26. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A24, 1034–1041 (2007).
    [CrossRef]
  27. B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors8, 3903–3931 (2008).
    [CrossRef] [PubMed]
  28. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  29. M. Born, E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, A. Taylor, P. Wayman, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
    [PubMed]
  30. J. Goodman, Introduction to Fourier Optics, McGraw-Hill Physical and Quantum Electronics Series (Roberts & Co., 2005).
  31. A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117, 43–48 (1995).
    [CrossRef]
  32. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010).
    [CrossRef]
  33. U. Schnars and W. P. O. Jptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13, R85 (2002).
    [CrossRef]
  34. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt.45, 1861–1865 (2006).
    [CrossRef] [PubMed]
  35. D. Hillmann, G. Hüttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE7372, 73720R (2009).
    [CrossRef]
  36. S. Vergnole, D. Lévesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express18, 10446–10461 (2010).
    [CrossRef] [PubMed]
  37. K. K. Chan and S. Tang, “Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography,” Opt. Express19, 26891–26904 (2011).
    [CrossRef]
  38. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49, 2014–21 (2010).
    [CrossRef] [PubMed]
  39. K. Langenberg, M. Berger, T. Kreutter, K. Mayer, and V. Schmitz, “Synthetic aperture focusing technique signal processing,” NDT International19, 177–189 (1986).
    [CrossRef]

2012 (1)

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Digital refocusing in optical coherence tomography,” Proc. SPIE8213, 82132C (2012).
[CrossRef]

2011 (4)

2010 (5)

2009 (2)

D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Phys. Lett.6, 753–758 (2009).
[CrossRef]

D. Hillmann, G. Hüttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE7372, 73720R (2009).
[CrossRef]

2008 (5)

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors8, 3903–3931 (2008).
[CrossRef] [PubMed]

M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol.19, 074010 (2008).
[CrossRef]

K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett.33, 1696–1698 (2008).
[CrossRef] [PubMed]

J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE7139, 713908–713907 (2008).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express16, 2555–2569 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (5)

2005 (1)

A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A, Pure Appl. Opt.7, 350 (2005).
[CrossRef]

2004 (1)

A. V. Zvyagin, “Fourier-domain optical coherence tomography: optimization of signal-to-noise ratio in full space,” Opt. Commun.242, 97–108 (2004).
[CrossRef]

2002 (2)

G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt.41, 4489–4496 (2002).
[CrossRef] [PubMed]

U. Schnars and W. P. O. Jptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13, R85 (2002).
[CrossRef]

1999 (1)

1995 (2)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117, 43–48 (1995).
[CrossRef]

J. Pomarico, U. Schnars, H. J. Hartmann, and W. Juptner, “Digital recording and numerical reconstruction of holograms: a new method for displaying light in flight,” Appl. Opt.34, 8095–8099 (1995).
[CrossRef] [PubMed]

1992 (1)

1986 (1)

K. Langenberg, M. Berger, T. Kreutter, K. Mayer, and V. Schmitz, “Synthetic aperture focusing technique signal processing,” NDT International19, 177–189 (1986).
[CrossRef]

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1, 153–156 (1969).
[CrossRef]

Aoki, G.

Arthaber, H.

Bachmann, A. H.

Berger, M.

K. Langenberg, M. Berger, T. Kreutter, K. Mayer, and V. Schmitz, “Synthetic aperture focusing technique signal processing,” NDT International19, 177–189 (1986).
[CrossRef]

Bhatia, A.

M. Born, E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, A. Taylor, P. Wayman, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
[PubMed]

Biedermann, B. R.

Blatter, C.

Blazkiewicz, P.

A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A, Pure Appl. Opt.7, 350 (2005).
[CrossRef]

Bonin, T.

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express16, 2555–2569 (2008).
[CrossRef] [PubMed]

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors8, 3903–3931 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3, 129–134 (2007).
[CrossRef]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A24, 1034–1041 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy:inverse scattering for optical coherence tomography,” Opt. Photon. News17, 25–25 (2006).

Born, M.

M. Born, E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, A. Taylor, P. Wayman, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
[PubMed]

Carney, P. S.

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors8, 3903–3931 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express16, 2555–2569 (2008).
[CrossRef] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A24, 1034–1041 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3, 129–134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy:inverse scattering for optical coherence tomography,” Opt. Photon. News17, 25–25 (2006).

Chan, K. K.

Charrière, F.

Chen, N.

Chen, Z.

Clemmow, P.

M. Born, E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, A. Taylor, P. Wayman, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
[PubMed]

Colomb, T.

Cuche, E.

Davis, B. J.

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors8, 3903–3931 (2008).
[CrossRef] [PubMed]

Depeursinge, C.

Drexler, W.

Eigenwillig, C. M.

El-Zaiat, S.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117, 43–48 (1995).
[CrossRef]

Endo, T.

Fercher, A.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117, 43–48 (1995).
[CrossRef]

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography—development, principles, applications,” Z. Med. Phys.20, 251 –276 (2010).
[PubMed]

Ferguson, R. A.

Franke, G.

Gabor, D.

M. Born, E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, A. Taylor, P. Wayman, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
[PubMed]

Geliknov, G. V.

D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Phys. Lett.6, 753–758 (2009).
[CrossRef]

Gelikonov, G. V.

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Digital refocusing in optical coherence tomography,” Proc. SPIE8213, 82132C (2012).
[CrossRef]

Gelikonov, V. M.

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Digital refocusing in optical coherence tomography,” Proc. SPIE8213, 82132C (2012).
[CrossRef]

D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Phys. Lett.6, 753–758 (2009).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier Optics, McGraw-Hill Physical and Quantum Electronics Series (Roberts & Co., 2005).

Grajciar, B.

Grimwood, A.

Guo, S.

Hagen-Eggert, M.

Hart, C.

Hartmann, H. J.

Hermann, B.

Herminjard, S.

Hillmann, D.

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy—holographic optical coherence tomography,” Opt. Lett.36, 2390–2392 (2011).
[CrossRef] [PubMed]

D. Hillmann, C. Lhrs, T. Bonin, P. Koch, A. Vogel, and G. Httmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE8091, 80911H (2011).
[CrossRef]

D. Hillmann, G. Hüttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE7372, 73720R (2009).
[CrossRef]

Hitzenberger, C.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117, 43–48 (1995).
[CrossRef]

Holmes, J.

J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE7139, 713908–713907 (2008).
[CrossRef]

Howe, W. C.

Httmann, G.

D. Hillmann, C. Lhrs, T. Bonin, P. Koch, A. Vogel, and G. Httmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE8091, 80911H (2011).
[CrossRef]

Huber, R.

Hüttmann, G.

Itoh, M.

Jptner, W. P. O.

U. Schnars and W. P. O. Jptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13, R85 (2002).
[CrossRef]

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Juptner, W.

Kamp, G.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117, 43–48 (1995).
[CrossRef]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010).
[CrossRef]

M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol.19, 074010 (2008).
[CrossRef]

M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett.24, 1693–1695 (1999).
[CrossRef]

Koch, P.

D. Hillmann, C. Lhrs, T. Bonin, P. Koch, A. Vogel, and G. Httmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE8091, 80911H (2011).
[CrossRef]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy—holographic optical coherence tomography,” Opt. Lett.36, 2390–2392 (2011).
[CrossRef] [PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett.35, 3432–3434 (2010).
[CrossRef] [PubMed]

D. Hillmann, G. Hüttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE7372, 73720R (2009).
[CrossRef]

Kreutter, T.

K. Langenberg, M. Berger, T. Kreutter, K. Mayer, and V. Schmitz, “Synthetic aperture focusing technique signal processing,” NDT International19, 177–189 (1986).
[CrossRef]

Kühn, J.

Lamouche, G.

Langenberg, K.

K. Langenberg, M. Berger, T. Kreutter, K. Mayer, and V. Schmitz, “Synthetic aperture focusing technique signal processing,” NDT International19, 177–189 (1986).
[CrossRef]

Lasser, T.

Lee, K.-S.

Leitgeb, R. A.

Lévesque, D.

Lhrs, C.

D. Hillmann, C. Lhrs, T. Bonin, P. Koch, A. Vogel, and G. Httmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE8091, 80911H (2011).
[CrossRef]

Liu, C.

Liu, L.

Lührs, C.

Makita, S.

Marks, D. L.

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors8, 3903–3931 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express16, 2555–2569 (2008).
[CrossRef] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A24, 1034–1041 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3, 129–134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy:inverse scattering for optical coherence tomography,” Opt. Photon. News17, 25–25 (2006).

Marquet, P.

Marron, J. C.

Mayer, K.

K. Langenberg, M. Berger, T. Kreutter, K. Mayer, and V. Schmitz, “Synthetic aperture focusing technique signal processing,” NDT International19, 177–189 (1986).
[CrossRef]

Moiseev, A. A.

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Digital refocusing in optical coherence tomography,” Proc. SPIE8213, 82132C (2012).
[CrossRef]

Montfort, F.

Pedrini, G.

Pomarico, J.

Potcoava, M. C.

M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol.19, 074010 (2008).
[CrossRef]

Považay, B.

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express16, 2555–2569 (2008).
[CrossRef] [PubMed]

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors8, 3903–3931 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3, 129–134 (2007).
[CrossRef]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A24, 1034–1041 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy:inverse scattering for optical coherence tomography,” Opt. Photon. News17, 25–25 (2006).

Rao, B.

Rolland, J. P.

Sattmann, H.

Schmitz, V.

K. Langenberg, M. Berger, T. Kreutter, K. Mayer, and V. Schmitz, “Synthetic aperture focusing technique signal processing,” NDT International19, 177–189 (1986).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O. Jptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13, R85 (2002).
[CrossRef]

J. Pomarico, U. Schnars, H. J. Hartmann, and W. Juptner, “Digital recording and numerical reconstruction of holograms: a new method for displaying light in flight,” Appl. Opt.34, 8095–8099 (1995).
[CrossRef] [PubMed]

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Schulz, T. J.

Shabanov, D. V.

D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Phys. Lett.6, 753–758 (2009).
[CrossRef]

Sheppard, C. J. R.

Shilyagin, P. A.

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Digital refocusing in optical coherence tomography,” Proc. SPIE8213, 82132C (2012).
[CrossRef]

Steinmann, L.

Stokes, A.

M. Born, E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, A. Taylor, P. Wayman, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
[PubMed]

Su, J.

Tang, S.

Taylor, A.

M. Born, E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, A. Taylor, P. Wayman, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
[PubMed]

Terpelov, D. A.

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Digital refocusing in optical coherence tomography,” Proc. SPIE8213, 82132C (2012).
[CrossRef]

Tiziani, H. J.

Tomlins, P. H.

Unterhuber, A.

Vergnole, S.

Villiger, M.

Vintrou, J.

A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A, Pure Appl. Opt.7, 350 (2005).
[CrossRef]

Vogel, A.

D. Hillmann, C. Lhrs, T. Bonin, P. Koch, A. Vogel, and G. Httmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE8091, 80911H (2011).
[CrossRef]

Wang, Q.

Wayman, P.

M. Born, E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, A. Taylor, P. Wayman, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
[PubMed]

Wieser, W.

Wilcock, W.

M. Born, E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, A. Taylor, P. Wayman, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
[PubMed]

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1, 153–156 (1969).
[CrossRef]

M. Born, E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, A. Taylor, P. Wayman, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
[PubMed]

Woolliams, P. D.

Yasuno, Y.

Yatagai, T.

Yu, L.

Zhang, J.

Zvyagin, A. V.

A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A, Pure Appl. Opt.7, 350 (2005).
[CrossRef]

A. V. Zvyagin, “Fourier-domain optical coherence tomography: optimization of signal-to-noise ratio in full space,” Opt. Commun.242, 97–108 (2004).
[CrossRef]

Appl. Opt. (5)

J. Opt. A, Pure Appl. Opt. (1)

A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A, Pure Appl. Opt.7, 350 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Laser Phys. Lett. (1)

D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Phys. Lett.6, 753–758 (2009).
[CrossRef]

Meas. Sci. Technol. (2)

M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol.19, 074010 (2008).
[CrossRef]

U. Schnars and W. P. O. Jptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13, R85 (2002).
[CrossRef]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3, 129–134 (2007).
[CrossRef]

NDT International (1)

K. Langenberg, M. Berger, T. Kreutter, K. Mayer, and V. Schmitz, “Synthetic aperture focusing technique signal processing,” NDT International19, 177–189 (1986).
[CrossRef]

Opt. Commun. (3)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117, 43–48 (1995).
[CrossRef]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1, 153–156 (1969).
[CrossRef]

A. V. Zvyagin, “Fourier-domain optical coherence tomography: optimization of signal-to-noise ratio in full space,” Opt. Commun.242, 97–108 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

Opt. Photon. News (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy:inverse scattering for optical coherence tomography,” Opt. Photon. News17, 25–25 (2006).

Proc. SPIE (4)

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Digital refocusing in optical coherence tomography,” Proc. SPIE8213, 82132C (2012).
[CrossRef]

D. Hillmann, C. Lhrs, T. Bonin, P. Koch, A. Vogel, and G. Httmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE8091, 80911H (2011).
[CrossRef]

J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE7139, 713908–713907 (2008).
[CrossRef]

D. Hillmann, G. Hüttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE7372, 73720R (2009).
[CrossRef]

Sensors (1)

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors8, 3903–3931 (2008).
[CrossRef] [PubMed]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010).
[CrossRef]

Z. Med. Phys. (1)

A. F. Fercher, “Optical coherence tomography—development, principles, applications,” Z. Med. Phys.20, 251 –276 (2010).
[PubMed]

Other (3)

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

M. Born, E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, A. Taylor, P. Wayman, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
[PubMed]

J. Goodman, Introduction to Fourier Optics, McGraw-Hill Physical and Quantum Electronics Series (Roberts & Co., 2005).

Supplementary Material (1)

» Media 1: AVI (4061 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Setups used for the holoscopic measurements. (a) A lens-less Michelson type setup was used for 0.05 NA on-axis holoscopy. (b) The Mach-Zehnder type setup for off-axis recording of the holograms with 0.14 NA was used for high resolution measurements.

Fig. 2
Fig. 2

Schematic representation of the coordinate system and variables in the sample arm (left) and reference arm (right) as used for Eq. (7) and Eq. (8).

Fig. 3
Fig. 3

Formation of a virtual image of a scatterer by a medium with an index of refraction n larger than one. The medium decreases the reconstruction distance by 1/n while the optical path length z′ is increased by n, i. e. z′ = nz.

Fig. 4
Fig. 4

B-scans from the reconstructed volume, which was recorded from a scattering phantom [38] consisting of multiple point scatterers. (a) and (b) result from single reconstructions according to Eq. (10) at two different propagation depths zP, which correspond to virtual numerical foci of the reconstruction. Outside the focal regions the lateral resolution is degraded. The confocal parameter was 220μm. (c) One-step reconstruction of the complete volume by Eq. (15) with the correct refractive index n = 1.5 (ζ = 0.44). No lateral resolution degradation is visible. The loss of intensity in depth is only caused by a sensitivity roll-off due to the limited instantaneous coherence length of the laser source. (d) One-step reconstruction of the complete volume by Eq. (11) without correcting for the increased index of refraction in the sample volume (i.e. n = 1.0 and thus ζ = 1). Focus degradation is worse than in the reconstruction for a single focal volume. This is due to the fact that the former corresponds to ζ = 1 and the latter to ζ = 0. The correct value of ζ = 0.44 is thus closer to the reconstruction of a single plane by Eq. (10).

Fig. 5
Fig. 5

En-face tomographic images of a bug at three different depth layers. The image cube was acquired by holoscopy. For reconstruction the one-step algorithm described by Eq. (15) was used. Internal structures of the bug can clearly be seen. Media 1 shows a low-resolution fly-through of the bug.

Fig. 6
Fig. 6

Holoscopic images of a grape acquired at 0.14 NA using the Mach-Zehnder type high resolution setup. Simple reconstruction by propagating the field to one focal plane (left column) is compared with the one-step reconstruction of the complete volume by an NFFT (right column). (a) B-scan of the simple reconstruction according to Eq. (10). (b) B-scan of the one-step reconstruction according to Eq. (15). (c) En-face image of the focal plane of the simple reconstruction. (d) En-face image of the same plane in the one-step reconstruction. (e) En-face image of the simple reconstruction in an optical distance of about 160μm from the virtual focus shows deteriorated resolution. (f) En-face image of a onestep reconstruction of the same layer. No degradation of the lateral resolution is observed. The confocal parameter was 28μm. Remaining artifacts arise because of reflections from within the setup.

Fig. 7
Fig. 7

Approximate increase of the reconstruction speed by using the one-step algorithm of Eq. (15) instead of sequentially applying Eq. (10) for reconstructing multiple focal volumes. The increase of speed depends on measurement depth d and the refractive index n of the sample.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ; k ) = γ | R ( x , y ; k ) + O ( x , y ; k ) | 2 = γ ( | R ( x , y ; k ) | 2 + | O ( x , y ; k ) | 2 + ( R * O ) ( x , y ; k ) + ( R O * ) ( x , y ; k ) ) ,
( R I ) ( x , y ; k ) = ( R | R | 2 ) ( x , y ; k ) + ( R | O | 2 ) ( x , y ; k ) DC and autocorrelation terms + ( | R | 2 O ) ( x , y ; k ) image term + ( R 2 O * ) ( x , y ; k ) twin image term ,
U ( x , y , z 0 + Δ z ) = 𝒫 k , Δ z [ U ( x , y , z 0 ) ]
U ( x , y , z 0 + Δ z 1 + Δ z 2 ) = 𝒫 k , Δ z 1 + Δ z 2 [ U ( x , y , z 0 ) ] = 𝒫 k , Δ z 2 [ 𝒫 k , Δ z 1 [ U ( x , y , z 0 ) ] ]
U ( x , y , z 0 ) = 𝒫 k , Δ z [ U ( x , y , z 0 + Δ z ) ] .
U ˜ ( k x , k y , z 0 + Δ z ) = P k , Δ z ( k x , k y ) U ˜ ( k x , k y , z 0 ) and P k , Δ z ( k x , k y ) = exp ( i k z Δ z ) ,
k z = k 2 k x 2 k y 2 .
O ( x , y ; k ) = A O S ( k ) d z 𝒫 k , z 0 + z [ η ( x , y , z ) e i k z e + i ϕ 0 ( k ) ] ,
R ( x , y ; k ) = A R S ( k ) e i k x 2 + y 2 + ( z 0 + z Ref ) 2 + i k z Ref + i ϕ 0 ( k ) ,
𝒫 k , z 0 [ ] exp ( + i k z ) 𝒫 k , z [ ] and P k , z ( k x , k y ) exp ( + i k z ) exp ( i k z z ) .
R 0 ( x , y ; k ) R ( x , y ; k ) e i ϕ 0 ( k ) e + i k z 0 , O 0 ( x , y ; k ) O ( x , y ; k ) e i ϕ 0 ( k ) e + i k z 0 .
I = γ | R + O | 2 = γ | R 0 + O 0 | 2
O 0 ( x , y ; k ) = A O S ( k ) d z 𝒫 k , z 0 + z 0 [ η ( x , y , z ) e 2 i k z ] .
O 0 ( x , y ; k ) = R 0 ( x , y ; k ) I f ( x , y ; k ) γ | R 0 ( x , y ; k ) | 2 .
𝒫 k , z 0 z P 0 [ O 0 ( x , y ; k ) ] = A O S ( k ) d z 𝒫 k , z 0 z P 0 𝒫 k , z 0 + z 0 [ η ( x , y , z ) e 2 i k z ] = A O S ( k ) d z 𝒫 k , z z P 0 [ η ( x , y , z ) e 2 i k z ] .
S ˜ ( z ) * η z P ( x , y , z ) = 2 A O d k exp ( + 2 i k z ) 𝒫 k , z 0 z P 0 [ O 0 ( x , y ; k ) ] .
S ˜ ( z ) * η ˜ z P ( k x , k y ; z ) = 2 A O d k exp ( + i 2 k z ) exp ( i k ( z 0 z P ) ) exp ( i k z ( z 0 + z P ) ) O ˜ 0 ( k x , k y ; k ) ,
S ˜ ( z ) * η ˜ ( k x , k y ; z ) = 2 A O d k exp ( + i ( k z + k ) z ) kernel exp ( + i ( k z k ) z 0 ) phase O ˜ 0 ( k x , k y ; k ) .
κ ( k ) = k z ( k ) + k
S ˜ ( z ) * η ˜ ( k x , k y ; z ) = 2 A O d κ d k d κ exp ( + i κ z ) kernel exp ( + i ( k z ( k ( κ ) ) k ( κ ) ) z 0 ) phase O ˜ 0 ( k x , k y ; k ( κ ) ) ,
k z = n 2 k 2 k x 2 k y 2 ,
S ˜ ( n z ) * η ˜ ( k x , k y ; z ) = 2 A O d ( n k ) exp ( + i ( k z + n k ) z ) kernel exp ( + i ( k z k ) z 0 ) phase O ˜ 0 ( k x , k y ; k ) ,
exp ( + i ( k z + n k ) z ) exp ( + i ( 2 n k + 1 n ( k z k ) ) z ) .
= exp ( ( + i ( 2 ζ ) k + ζ k z ) z ) ,
S ˜ ( z ) * η ˜ ( k x , k y ; z ) = 2 A O d k e + i ( ( 2 ζ ) k + ζ k z ) z kernel e + i ( k z k ) z 0 phase O ˜ 0 ( k x , k y ; k ) .
C S L ~ 𝒪 ( 8 N N X N Y log ( 4 N X N Y ) + N X N Y N log N ) .
C F V ~ 𝒪 ( 6 N N X N Y log ( 4 N X N Y ) + 4 N X N Y N log N ) .

Metrics