Abstract

Rare earth-activated 1-D photonic crystals were fabricated by RF-sputtering technique. The cavity is constituted by an Er3+-doped SiO2 active layer inserted between two Bragg reflectors consisting of ten pairs of SiO2/TiO2 layers. Scanning electron microscopy is employed to put in evidence the quality of the sample, the homogeneities of the layers thickness and the good adhesion among them. Near infrared transmittance and variable angle reflectance spectra confirm the presence of a stop band from 1500 nm to 2000 nm with a cavity resonance centered at 1749 nm at 0° and a quality factor of 890. The influence of the cavity on the 4I13/24I15/2 emission band of Er3+ ion is also demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
    [CrossRef]
  2. T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel Switzerland)11(2), 1972–1991 (2011).
    [CrossRef]
  3. V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano5(12), 10055–10064 (2011).
    [CrossRef] [PubMed]
  4. M. Ferrari and G. C. Righini, Physics and Chemistry of Rare-Earth Ions Doped Glasses (Trans Tech Publishers, 2008), Chap 3.
  5. C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett.36(20), 3990–3992 (2011).
    [CrossRef] [PubMed]
  6. M. Clara Gonçalves, L. M. Fortes, R. M. Almeida, A. Chiasera, A. Chiappini, M. Ferrari, and S. Bhaktha, “Photoluminescence in Er3+/Yb3+ -doped silica-titania inverse opal structures,” J. Sol-Gel Sci. Technol.55, 52–58 (2010).
  7. G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).
  8. H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ion radiations,” Opt. Mater.11(2-3), 167–180 (1999).
    [CrossRef]
  9. A. Chiasera, R. Belli, S. N. B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, G. C. Righini, and C. Tosello, “High quality factor Er3+-activated dielectric microcavity fabricated by RF-sputtering,” Appl. Phys. Lett.89(17), 171910 (2006).
    [CrossRef]
  10. Y. Li, L. M. Fortes, A. Chiappini, M. Ferrari, and R. M. Almeida, “High quality factor Er-doped Fabry-Perot microcavities by sol-gel processing,” J. Phys. D Appl. Phys.42(20), 205104 (2009).
    [CrossRef]
  11. J. Jasieniak, C. Sada, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Sol-gel based vertical optical microcavities with quantum dot defect layers,” Adv. Funct. Mater.18(23), 3772–3779 (2008).
    [CrossRef]
  12. L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, “Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors,” Appl. Phys. Lett.88(12), 121110 (2006).
    [CrossRef]
  13. S. F. Chichibu, T. Ohmori, N. Shibata, and T. Koyama, “Dielectric SiO2/ZrO2 distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method,” Appl. Phys. Lett.88(16), 161914 (2006).
    [CrossRef]
  14. Y. Li and R. M. Almeida, “Photoluminescence from a Tb-doped photonic crystal microcavity for white light generation,” J. Phys. D43(45), 455101 (2010).
    [CrossRef]
  15. G. Ma, J. Shen, Z. Zhang, Z. Hua, and S. H. Tang, “Ultrafast all-optical switching in one-dimensional photonic crystal with two defects,” Opt. Express14(2), 858–865 (2006).
    [CrossRef] [PubMed]
  16. Y. G. Boucher, A. Chiasera, M. Ferrari, and G. C. Righini, “Photoluminescence spectra of an optically pumped erbium-doped micro-cavity with SiO2/TiO2 distributed Bragg reflectors,” J. Lumin.129(12), 1989–1993 (2009).
    [CrossRef]
  17. A. Wajid, “On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions,” Sens. Actuators A Phys.63(1), 41–46 (1997).
    [CrossRef]
  18. S. Boyadzhiev, V. Georgieval, and M. Rassovska, “Characterization of reactive sputtered TiO2 thin films for gas sensor applications,” J. Phys. Conf. Ser.253,012040 (2010).
  19. S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
    [CrossRef]

2011

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
[CrossRef]

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel Switzerland)11(2), 1972–1991 (2011).
[CrossRef]

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano5(12), 10055–10064 (2011).
[CrossRef] [PubMed]

C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett.36(20), 3990–3992 (2011).
[CrossRef] [PubMed]

2010

S. Boyadzhiev, V. Georgieval, and M. Rassovska, “Characterization of reactive sputtered TiO2 thin films for gas sensor applications,” J. Phys. Conf. Ser.253,012040 (2010).

Y. Li and R. M. Almeida, “Photoluminescence from a Tb-doped photonic crystal microcavity for white light generation,” J. Phys. D43(45), 455101 (2010).
[CrossRef]

M. Clara Gonçalves, L. M. Fortes, R. M. Almeida, A. Chiasera, A. Chiappini, M. Ferrari, and S. Bhaktha, “Photoluminescence in Er3+/Yb3+ -doped silica-titania inverse opal structures,” J. Sol-Gel Sci. Technol.55, 52–58 (2010).

2009

Y. Li, L. M. Fortes, A. Chiappini, M. Ferrari, and R. M. Almeida, “High quality factor Er-doped Fabry-Perot microcavities by sol-gel processing,” J. Phys. D Appl. Phys.42(20), 205104 (2009).
[CrossRef]

Y. G. Boucher, A. Chiasera, M. Ferrari, and G. C. Righini, “Photoluminescence spectra of an optically pumped erbium-doped micro-cavity with SiO2/TiO2 distributed Bragg reflectors,” J. Lumin.129(12), 1989–1993 (2009).
[CrossRef]

2008

J. Jasieniak, C. Sada, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Sol-gel based vertical optical microcavities with quantum dot defect layers,” Adv. Funct. Mater.18(23), 3772–3779 (2008).
[CrossRef]

2006

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, “Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors,” Appl. Phys. Lett.88(12), 121110 (2006).
[CrossRef]

S. F. Chichibu, T. Ohmori, N. Shibata, and T. Koyama, “Dielectric SiO2/ZrO2 distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method,” Appl. Phys. Lett.88(16), 161914 (2006).
[CrossRef]

A. Chiasera, R. Belli, S. N. B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, G. C. Righini, and C. Tosello, “High quality factor Er3+-activated dielectric microcavity fabricated by RF-sputtering,” Appl. Phys. Lett.89(17), 171910 (2006).
[CrossRef]

G. Ma, J. Shen, Z. Zhang, Z. Hua, and S. H. Tang, “Ultrafast all-optical switching in one-dimensional photonic crystal with two defects,” Opt. Express14(2), 858–865 (2006).
[CrossRef] [PubMed]

2000

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

1999

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ion radiations,” Opt. Mater.11(2-3), 167–180 (1999).
[CrossRef]

1997

A. Wajid, “On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions,” Sens. Actuators A Phys.63(1), 41–46 (1997).
[CrossRef]

Aegerter, M. A.

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Almeida, R. M.

M. Clara Gonçalves, L. M. Fortes, R. M. Almeida, A. Chiasera, A. Chiappini, M. Ferrari, and S. Bhaktha, “Photoluminescence in Er3+/Yb3+ -doped silica-titania inverse opal structures,” J. Sol-Gel Sci. Technol.55, 52–58 (2010).

Y. Li and R. M. Almeida, “Photoluminescence from a Tb-doped photonic crystal microcavity for white light generation,” J. Phys. D43(45), 455101 (2010).
[CrossRef]

Y. Li, L. M. Fortes, A. Chiappini, M. Ferrari, and R. M. Almeida, “High quality factor Er-doped Fabry-Perot microcavities by sol-gel processing,” J. Phys. D Appl. Phys.42(20), 205104 (2009).
[CrossRef]

Amra, C.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ion radiations,” Opt. Mater.11(2-3), 167–180 (1999).
[CrossRef]

Armellini, C.

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
[CrossRef]

Atwater, H. A.

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano5(12), 10055–10064 (2011).
[CrossRef] [PubMed]

Begon, C.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ion radiations,” Opt. Mater.11(2-3), 167–180 (1999).
[CrossRef]

Belarouci, A.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ion radiations,” Opt. Mater.11(2-3), 167–180 (1999).
[CrossRef]

Belli, R.

A. Chiasera, R. Belli, S. N. B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, G. C. Righini, and C. Tosello, “High quality factor Er3+-activated dielectric microcavity fabricated by RF-sputtering,” Appl. Phys. Lett.89(17), 171910 (2006).
[CrossRef]

Berneschi, S.

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
[CrossRef]

Bhaktha, S.

M. Clara Gonçalves, L. M. Fortes, R. M. Almeida, A. Chiasera, A. Chiappini, M. Ferrari, and S. Bhaktha, “Photoluminescence in Er3+/Yb3+ -doped silica-titania inverse opal structures,” J. Sol-Gel Sci. Technol.55, 52–58 (2010).

Bhaktha, S. N. B.

A. Chiasera, R. Belli, S. N. B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, G. C. Righini, and C. Tosello, “High quality factor Er3+-activated dielectric microcavity fabricated by RF-sputtering,” Appl. Phys. Lett.89(17), 171910 (2006).
[CrossRef]

Boucher, Y. G.

Y. G. Boucher, A. Chiasera, M. Ferrari, and G. C. Righini, “Photoluminescence spectra of an optically pumped erbium-doped micro-cavity with SiO2/TiO2 distributed Bragg reflectors,” J. Lumin.129(12), 1989–1993 (2009).
[CrossRef]

Boyadzhiev, S.

S. Boyadzhiev, V. Georgieval, and M. Rassovska, “Characterization of reactive sputtered TiO2 thin films for gas sensor applications,” J. Phys. Conf. Ser.253,012040 (2010).

Carpentiero, A.

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
[CrossRef]

Carro, P. D.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, “Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors,” Appl. Phys. Lett.88(12), 121110 (2006).
[CrossRef]

Chiappini, A.

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
[CrossRef]

M. Clara Gonçalves, L. M. Fortes, R. M. Almeida, A. Chiasera, A. Chiappini, M. Ferrari, and S. Bhaktha, “Photoluminescence in Er3+/Yb3+ -doped silica-titania inverse opal structures,” J. Sol-Gel Sci. Technol.55, 52–58 (2010).

Y. Li, L. M. Fortes, A. Chiappini, M. Ferrari, and R. M. Almeida, “High quality factor Er-doped Fabry-Perot microcavities by sol-gel processing,” J. Phys. D Appl. Phys.42(20), 205104 (2009).
[CrossRef]

A. Chiasera, R. Belli, S. N. B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, G. C. Righini, and C. Tosello, “High quality factor Er3+-activated dielectric microcavity fabricated by RF-sputtering,” Appl. Phys. Lett.89(17), 171910 (2006).
[CrossRef]

Chiasera, A.

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
[CrossRef]

M. Clara Gonçalves, L. M. Fortes, R. M. Almeida, A. Chiasera, A. Chiappini, M. Ferrari, and S. Bhaktha, “Photoluminescence in Er3+/Yb3+ -doped silica-titania inverse opal structures,” J. Sol-Gel Sci. Technol.55, 52–58 (2010).

Y. G. Boucher, A. Chiasera, M. Ferrari, and G. C. Righini, “Photoluminescence spectra of an optically pumped erbium-doped micro-cavity with SiO2/TiO2 distributed Bragg reflectors,” J. Lumin.129(12), 1989–1993 (2009).
[CrossRef]

J. Jasieniak, C. Sada, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Sol-gel based vertical optical microcavities with quantum dot defect layers,” Adv. Funct. Mater.18(23), 3772–3779 (2008).
[CrossRef]

A. Chiasera, R. Belli, S. N. B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, G. C. Righini, and C. Tosello, “High quality factor Er3+-activated dielectric microcavity fabricated by RF-sputtering,” Appl. Phys. Lett.89(17), 171910 (2006).
[CrossRef]

Chichibu, S. F.

S. F. Chichibu, T. Ohmori, N. Shibata, and T. Koyama, “Dielectric SiO2/ZrO2 distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method,” Appl. Phys. Lett.88(16), 161914 (2006).
[CrossRef]

Cingolani, R.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, “Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors,” Appl. Phys. Lett.88(12), 121110 (2006).
[CrossRef]

Clara Gonçalves, M.

M. Clara Gonçalves, L. M. Fortes, R. M. Almeida, A. Chiasera, A. Chiappini, M. Ferrari, and S. Bhaktha, “Photoluminescence in Er3+/Yb3+ -doped silica-titania inverse opal structures,” J. Sol-Gel Sci. Technol.55, 52–58 (2010).

Conibeer, G. J.

Dumeige, Y.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

Féron, P.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

Ferrari, M.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
[CrossRef]

M. Clara Gonçalves, L. M. Fortes, R. M. Almeida, A. Chiasera, A. Chiappini, M. Ferrari, and S. Bhaktha, “Photoluminescence in Er3+/Yb3+ -doped silica-titania inverse opal structures,” J. Sol-Gel Sci. Technol.55, 52–58 (2010).

Y. Li, L. M. Fortes, A. Chiappini, M. Ferrari, and R. M. Almeida, “High quality factor Er-doped Fabry-Perot microcavities by sol-gel processing,” J. Phys. D Appl. Phys.42(20), 205104 (2009).
[CrossRef]

Y. G. Boucher, A. Chiasera, M. Ferrari, and G. C. Righini, “Photoluminescence spectra of an optically pumped erbium-doped micro-cavity with SiO2/TiO2 distributed Bragg reflectors,” J. Lumin.129(12), 1989–1993 (2009).
[CrossRef]

J. Jasieniak, C. Sada, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Sol-gel based vertical optical microcavities with quantum dot defect layers,” Adv. Funct. Mater.18(23), 3772–3779 (2008).
[CrossRef]

A. Chiasera, R. Belli, S. N. B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, G. C. Righini, and C. Tosello, “High quality factor Er3+-activated dielectric microcavity fabricated by RF-sputtering,” Appl. Phys. Lett.89(17), 171910 (2006).
[CrossRef]

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Ferry, V. E.

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano5(12), 10055–10064 (2011).
[CrossRef] [PubMed]

Fortes, L. M.

M. Clara Gonçalves, L. M. Fortes, R. M. Almeida, A. Chiasera, A. Chiappini, M. Ferrari, and S. Bhaktha, “Photoluminescence in Er3+/Yb3+ -doped silica-titania inverse opal structures,” J. Sol-Gel Sci. Technol.55, 52–58 (2010).

Y. Li, L. M. Fortes, A. Chiappini, M. Ferrari, and R. M. Almeida, “High quality factor Er-doped Fabry-Perot microcavities by sol-gel processing,” J. Phys. D Appl. Phys.42(20), 205104 (2009).
[CrossRef]

Georgieval, V.

S. Boyadzhiev, V. Georgieval, and M. Rassovska, “Characterization of reactive sputtered TiO2 thin films for gas sensor applications,” J. Phys. Conf. Ser.253,012040 (2010).

Gonçalves, R. R.

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Hua, Z.

Jacquier, B.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ion radiations,” Opt. Mater.11(2-3), 167–180 (1999).
[CrossRef]

Jasieniak, J.

J. Jasieniak, C. Sada, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Sol-gel based vertical optical microcavities with quantum dot defect layers,” Adv. Funct. Mater.18(23), 3772–3779 (2008).
[CrossRef]

Jestin, Y.

A. Chiasera, R. Belli, S. N. B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, G. C. Righini, and C. Tosello, “High quality factor Er3+-activated dielectric microcavity fabricated by RF-sputtering,” Appl. Phys. Lett.89(17), 171910 (2006).
[CrossRef]

Johnson, C. M.

Jurdyc, A. M.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ion radiations,” Opt. Mater.11(2-3), 167–180 (1999).
[CrossRef]

Koyama, T.

S. F. Chichibu, T. Ohmori, N. Shibata, and T. Koyama, “Dielectric SiO2/ZrO2 distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method,” Appl. Phys. Lett.88(16), 161914 (2006).
[CrossRef]

Lamarque, F.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ion radiations,” Opt. Mater.11(2-3), 167–180 (1999).
[CrossRef]

Lanzani, G.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, “Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors,” Appl. Phys. Lett.88(12), 121110 (2006).
[CrossRef]

Li, Y.

Y. Li and R. M. Almeida, “Photoluminescence from a Tb-doped photonic crystal microcavity for white light generation,” J. Phys. D43(45), 455101 (2010).
[CrossRef]

Y. Li, L. M. Fortes, A. Chiappini, M. Ferrari, and R. M. Almeida, “High quality factor Er-doped Fabry-Perot microcavities by sol-gel processing,” J. Phys. D Appl. Phys.42(20), 205104 (2009).
[CrossRef]

Longhi, S.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, “Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors,” Appl. Phys. Lett.88(12), 121110 (2006).
[CrossRef]

Ma, G.

Martucci, A.

J. Jasieniak, C. Sada, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Sol-gel based vertical optical microcavities with quantum dot defect layers,” Adv. Funct. Mater.18(23), 3772–3779 (2008).
[CrossRef]

Mazzola, M.

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
[CrossRef]

Mele, E.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, “Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors,” Appl. Phys. Lett.88(12), 121110 (2006).
[CrossRef]

Messaddeq, Y.

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Montagna, M.

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Moretti, P.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ion radiations,” Opt. Mater.11(2-3), 167–180 (1999).
[CrossRef]

Moser, E.

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
[CrossRef]

A. Chiasera, R. Belli, S. N. B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, G. C. Righini, and C. Tosello, “High quality factor Er3+-activated dielectric microcavity fabricated by RF-sputtering,” Appl. Phys. Lett.89(17), 171910 (2006).
[CrossRef]

Mulvaney, P.

J. Jasieniak, C. Sada, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Sol-gel based vertical optical microcavities with quantum dot defect layers,” Adv. Funct. Mater.18(23), 3772–3779 (2008).
[CrossRef]

Nunzi Conti, G.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

Ohmori, T.

S. F. Chichibu, T. Ohmori, N. Shibata, and T. Koyama, “Dielectric SiO2/ZrO2 distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method,” Appl. Phys. Lett.88(16), 161914 (2006).
[CrossRef]

Persano, L.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, “Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors,” Appl. Phys. Lett.88(12), 121110 (2006).
[CrossRef]

Pisignano, D.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, “Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors,” Appl. Phys. Lett.88(12), 121110 (2006).
[CrossRef]

Polman, A.

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano5(12), 10055–10064 (2011).
[CrossRef] [PubMed]

Rassovska, M.

S. Boyadzhiev, V. Georgieval, and M. Rassovska, “Characterization of reactive sputtered TiO2 thin films for gas sensor applications,” J. Phys. Conf. Ser.253,012040 (2010).

Reece, P. J.

Ribeiro, S. J. L.

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Righini, G. C.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
[CrossRef]

Y. G. Boucher, A. Chiasera, M. Ferrari, and G. C. Righini, “Photoluminescence spectra of an optically pumped erbium-doped micro-cavity with SiO2/TiO2 distributed Bragg reflectors,” J. Lumin.129(12), 1989–1993 (2009).
[CrossRef]

A. Chiasera, R. Belli, S. N. B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, G. C. Righini, and C. Tosello, “High quality factor Er3+-activated dielectric microcavity fabricated by RF-sputtering,” Appl. Phys. Lett.89(17), 171910 (2006).
[CrossRef]

Rigneault, H.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ion radiations,” Opt. Mater.11(2-3), 167–180 (1999).
[CrossRef]

Ristic, D.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

Robert, S.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ion radiations,” Opt. Mater.11(2-3), 167–180 (1999).
[CrossRef]

Sada, C.

J. Jasieniak, C. Sada, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Sol-gel based vertical optical microcavities with quantum dot defect layers,” Adv. Funct. Mater.18(23), 3772–3779 (2008).
[CrossRef]

Shen, J.

Shibata, N.

S. F. Chichibu, T. Ohmori, N. Shibata, and T. Koyama, “Dielectric SiO2/ZrO2 distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method,” Appl. Phys. Lett.88(16), 161914 (2006).
[CrossRef]

Soria, S.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

Su, S.-Y.

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel Switzerland)11(2), 1972–1991 (2011).
[CrossRef]

Tang, L.

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel Switzerland)11(2), 1972–1991 (2011).
[CrossRef]

Tang, S. H.

Tosello, C.

A. Chiasera, R. Belli, S. N. B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, G. C. Righini, and C. Tosello, “High quality factor Er3+-activated dielectric microcavity fabricated by RF-sputtering,” Appl. Phys. Lett.89(17), 171910 (2006).
[CrossRef]

Varas, S.

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
[CrossRef]

Wajid, A.

A. Wajid, “On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions,” Sens. Actuators A Phys.63(1), 41–46 (1997).
[CrossRef]

Yoshie, T.

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel Switzerland)11(2), 1972–1991 (2011).
[CrossRef]

Zavelani-Rossi, M.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, “Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors,” Appl. Phys. Lett.88(12), 121110 (2006).
[CrossRef]

Zhang, Z.

ACS Nano

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano5(12), 10055–10064 (2011).
[CrossRef] [PubMed]

Adv. Funct. Mater.

J. Jasieniak, C. Sada, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Sol-gel based vertical optical microcavities with quantum dot defect layers,” Adv. Funct. Mater.18(23), 3772–3779 (2008).
[CrossRef]

Appl. Phys. Lett.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, “Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors,” Appl. Phys. Lett.88(12), 121110 (2006).
[CrossRef]

S. F. Chichibu, T. Ohmori, N. Shibata, and T. Koyama, “Dielectric SiO2/ZrO2 distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method,” Appl. Phys. Lett.88(16), 161914 (2006).
[CrossRef]

A. Chiasera, R. Belli, S. N. B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, G. C. Righini, and C. Tosello, “High quality factor Er3+-activated dielectric microcavity fabricated by RF-sputtering,” Appl. Phys. Lett.89(17), 171910 (2006).
[CrossRef]

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

J. Lumin.

Y. G. Boucher, A. Chiasera, M. Ferrari, and G. C. Righini, “Photoluminescence spectra of an optically pumped erbium-doped micro-cavity with SiO2/TiO2 distributed Bragg reflectors,” J. Lumin.129(12), 1989–1993 (2009).
[CrossRef]

J. Phys. Conf. Ser.

S. Boyadzhiev, V. Georgieval, and M. Rassovska, “Characterization of reactive sputtered TiO2 thin films for gas sensor applications,” J. Phys. Conf. Ser.253,012040 (2010).

J. Phys. D

Y. Li and R. M. Almeida, “Photoluminescence from a Tb-doped photonic crystal microcavity for white light generation,” J. Phys. D43(45), 455101 (2010).
[CrossRef]

J. Phys. D Appl. Phys.

Y. Li, L. M. Fortes, A. Chiappini, M. Ferrari, and R. M. Almeida, “High quality factor Er-doped Fabry-Perot microcavities by sol-gel processing,” J. Phys. D Appl. Phys.42(20), 205104 (2009).
[CrossRef]

J. Sol-Gel Sci. Technol.

M. Clara Gonçalves, L. M. Fortes, R. M. Almeida, A. Chiasera, A. Chiappini, M. Ferrari, and S. Bhaktha, “Photoluminescence in Er3+/Yb3+ -doped silica-titania inverse opal structures,” J. Sol-Gel Sci. Technol.55, 52–58 (2010).

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. Technol.60(3), 408–425 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ion radiations,” Opt. Mater.11(2-3), 167–180 (1999).
[CrossRef]

Riv. Nuovo Cim.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

Sens. Actuators A Phys.

A. Wajid, “On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions,” Sens. Actuators A Phys.63(1), 41–46 (1997).
[CrossRef]

Sensors (Basel Switzerland)

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel Switzerland)11(2), 1972–1991 (2011).
[CrossRef]

Other

M. Ferrari and G. C. Righini, Physics and Chemistry of Rare-Earth Ions Doped Glasses (Trans Tech Publishers, 2008), Chap 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of the excitation and detection geometries employed for a reliable assessment of the influence of the cavity on the 1.5 μm emission band of Er3+ ion. Figure 1(a): configuration employed for the Er3+-activated reference sample: Figure 1(b): configuration employed for the Er3+-activated 1-D microcavity.

Fig. 2
Fig. 2

SEM micrograph of the 1-D microcavity cross section. The bright and the dark areas correspond to TiO2 and SiO2 layers, respectively. The substrate is located on the bottom of the images and the air on the top. (a): image for a section of the sample of about 16 µm in length. (b): image for a section of the sample of about 60 µm in length.

Fig. 3
Fig. 3

(a) Transmittance spectrum of the cavity with two Bragg reflectors, each one consisting of ten pairs of SiO2/TiO2 layers, in the region between 1000 and 2600 nm. The stop band range from 1490 to 1980 nm. The cavity resonance corresponds to the sharp maximum centered at 1.749 μm. The incident light is unpolarized. (b) High resolved (resolution 0.1 nm) transmission measurement of the cavity resonance. The line width of the resonance is 1.97 nm that correspond to a quality Q factor of 890. The spectral region shown in (b) is evidenced by the dashed box in (a).

Fig. 4
Fig. 4

4I13/24I15/2 photoluminescence spectra of the cavity activated by Er3+ ion in 1-D photonic crystal () and of the single Er3+-doped SiO2 active layer with first Bragg mirror (). The light is recorded at 50° from the normal on the samples upon excitation at 514.5 nm.

Fig. 5
Fig. 5

Angle dependence reflectance spectra and luminescence spectrum obtained detecting the luminescence at 50° from the normal incidence.

Metrics