Abstract

We present a basic theory on Airy surface magneto plasmons (SMPs) at the interface between a dielectric layer and a metal layer (or a doped semiconductor layer) under an external static magnetic field in the Voigt configuration. It is shown that, in the paraxial approximation, the Airy SMPs can propagate along the surface without violating the nondiffracting characteristics, while the ballistic trajectory of the Airy SMPs can be tuned by the applied magnetic field. In addition, the self-deflection-tuning property of the Airy SMPs depends on the direction of the external magnetic field applied, owing to the nonreciprocal effect.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys.47(3), 264–267 (1979).
    [CrossRef]
  2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett.99(21), 213901 (2007).
    [CrossRef] [PubMed]
  3. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett.32(8), 979–981 (2007).
    [CrossRef] [PubMed]
  4. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
    [CrossRef]
  5. A. Rudnick and D. M. Marom, “Airy-soliton interactions in Kerr media,” Opt. Express19(25), 25570–25582 (2011).
    [CrossRef] [PubMed]
  6. G. Zhou, R. Chen, and X. Chu, “Propagation of Airy beams in uniaxial crystals orthogonal to the optical axis,” Opt. Express20(3), 2196–2205 (2012).
    [CrossRef] [PubMed]
  7. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics2(11), 675–678 (2008).
    [CrossRef]
  8. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett.105(25), 253901 (2010).
    [CrossRef] [PubMed]
  9. C. J. Zapata-Rodríguez, S. Vuković, M. R. Belić, D. Pastor, and J. J. Miret, “Nondiffracting Bessel plasmons,” Opt. Express19(20), 19572–19581 (2011).
    [CrossRef] [PubMed]
  10. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett.25(20), 1493–1495 (2000).
    [CrossRef] [PubMed]
  11. A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett.35(12), 2082–2084 (2010).
    [CrossRef] [PubMed]
  12. W. Liu, D. N. Neshev, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Plasmonic Airy beam manipulation in linear optical potentials,” Opt. Lett.36(7), 1164–1166 (2011).
    [CrossRef] [PubMed]
  13. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett.107(11), 116802 (2011).
    [CrossRef] [PubMed]
  14. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett.107(12), 126804 (2011).
    [CrossRef] [PubMed]
  15. J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett.28(22), 1455–1458 (1972).
    [CrossRef]
  16. M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep.41(1-8), 1–416 (2001).
    [CrossRef]
  17. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
    [CrossRef] [PubMed]
  18. B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett.37(11), 1895–1897 (2012).
    [CrossRef] [PubMed]
  19. E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970).
    [CrossRef]
  20. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett.33(3), 207–209 (2008).
    [CrossRef] [PubMed]
  21. I. L. Tyler, B. Fischer, and R. J. Bell, “On the observation of surface magnetoplasmons,” Opt. Commun.8(2), 145–146 (1973).
    [CrossRef]
  22. L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B30(6), 3277–3282 (1984).
    [CrossRef]
  23. J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express13(3), 847–859 (2005).
    [CrossRef] [PubMed]
  24. M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B Condens. Matter36(11), 5960–5967 (1987).
    [CrossRef] [PubMed]

2012

2011

2010

A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett.35(12), 2082–2084 (2010).
[CrossRef] [PubMed]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett.105(25), 253901 (2010).
[CrossRef] [PubMed]

2009

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
[CrossRef]

2008

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics2(11), 675–678 (2008).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett.33(3), 207–209 (2008).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
[CrossRef] [PubMed]

2007

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett.99(21), 213901 (2007).
[CrossRef] [PubMed]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett.32(8), 979–981 (2007).
[CrossRef] [PubMed]

2005

2001

M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep.41(1-8), 1–416 (2001).
[CrossRef]

2000

1987

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B Condens. Matter36(11), 5960–5967 (1987).
[CrossRef] [PubMed]

1984

L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B30(6), 3277–3282 (1984).
[CrossRef]

1979

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys.47(3), 264–267 (1979).
[CrossRef]

1973

I. L. Tyler, B. Fischer, and R. J. Bell, “On the observation of surface magnetoplasmons,” Opt. Commun.8(2), 145–146 (1973).
[CrossRef]

1972

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett.28(22), 1455–1458 (1972).
[CrossRef]

1970

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970).
[CrossRef]

Abdollahpour, D.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett.105(25), 253901 (2010).
[CrossRef] [PubMed]

Arie, A.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
[CrossRef]

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys.47(3), 264–267 (1979).
[CrossRef]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics2(11), 675–678 (2008).
[CrossRef]

Belic, M. R.

Bell, R. J.

I. L. Tyler, B. Fischer, and R. J. Bell, “On the observation of surface magnetoplasmons,” Opt. Commun.8(2), 145–146 (1973).
[CrossRef]

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys.47(3), 264–267 (1979).
[CrossRef]

Bolivar, P. H.

Brion, J. J.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett.28(22), 1455–1458 (1972).
[CrossRef]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett.33(3), 207–209 (2008).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett.99(21), 213901 (2007).
[CrossRef] [PubMed]

Burstein, E.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett.28(22), 1455–1458 (1972).
[CrossRef]

Chávez-Cerda, S.

Chen, R.

Christodoulides, D. N.

Chu, X.

Dholakia, K.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics2(11), 675–678 (2008).
[CrossRef]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett.33(3), 207–209 (2008).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett.99(21), 213901 (2007).
[CrossRef] [PubMed]

Ellenbogen, T.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
[CrossRef]

Fan, S.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
[CrossRef] [PubMed]

Fischer, B.

I. L. Tyler, B. Fischer, and R. J. Bell, “On the observation of surface magnetoplasmons,” Opt. Commun.8(2), 145–146 (1973).
[CrossRef]

Furdyna, J. K.

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970).
[CrossRef]

Ganany-Padowicz, A.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
[CrossRef]

Gómez Rivas, J.

Grill, W.

L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B30(6), 3277–3282 (1984).
[CrossRef]

Gutiérrez-Vega, J. C.

Halevi, P.

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B Condens. Matter36(11), 5960–5967 (1987).
[CrossRef] [PubMed]

Hartstein, A.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett.28(22), 1455–1458 (1972).
[CrossRef]

Hu, B.

Iturbe-Castillo, M. D.

Janke, C.

Janunts, N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett.107(11), 116802 (2011).
[CrossRef] [PubMed]

Kivshar, Y. S.

W. Liu, D. N. Neshev, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Plasmonic Airy beam manipulation in linear optical potentials,” Opt. Lett.36(7), 1164–1166 (2011).
[CrossRef] [PubMed]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett.107(11), 116802 (2011).
[CrossRef] [PubMed]

Klein, A. E.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett.107(11), 116802 (2011).
[CrossRef] [PubMed]

Kurz, H.

Kushwaha, M. S.

M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep.41(1-8), 1–416 (2001).
[CrossRef]

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B Condens. Matter36(11), 5960–5967 (1987).
[CrossRef] [PubMed]

Li, L.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett.107(12), 126804 (2011).
[CrossRef] [PubMed]

Li, T.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett.107(12), 126804 (2011).
[CrossRef] [PubMed]

Liu, W.

Lüthi, B.

L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B30(6), 3277–3282 (1984).
[CrossRef]

Marom, D. M.

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics2(11), 675–678 (2008).
[CrossRef]

Minovich, A.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett.107(11), 116802 (2011).
[CrossRef] [PubMed]

Miret, J. J.

Miroshnichenko, A. E.

Mohler, E.

L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B30(6), 3277–3282 (1984).
[CrossRef]

Neshev, D. N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett.107(11), 116802 (2011).
[CrossRef] [PubMed]

W. Liu, D. N. Neshev, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Plasmonic Airy beam manipulation in linear optical potentials,” Opt. Lett.36(7), 1164–1166 (2011).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970).
[CrossRef]

Papazoglou, D. G.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett.105(25), 253901 (2010).
[CrossRef] [PubMed]

Pastor, D.

Pertsch, T.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett.107(11), 116802 (2011).
[CrossRef] [PubMed]

Remer, L.

L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B30(6), 3277–3282 (1984).
[CrossRef]

Rudnick, A.

Salandrino, A.

Shadrivov, I. V.

Siviloglou, G. A.

Suntsov, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett.105(25), 253901 (2010).
[CrossRef] [PubMed]

Tyler, I. L.

I. L. Tyler, B. Fischer, and R. J. Bell, “On the observation of surface magnetoplasmons,” Opt. Commun.8(2), 145–146 (1973).
[CrossRef]

Tzortzakis, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett.105(25), 253901 (2010).
[CrossRef] [PubMed]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
[CrossRef] [PubMed]

Voloch-Bloch, N.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
[CrossRef]

Vukovic, S.

Wallis, R. F.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett.28(22), 1455–1458 (1972).
[CrossRef]

Wang, Q. J.

Wang, S. M.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett.107(12), 126804 (2011).
[CrossRef] [PubMed]

Wang, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
[CrossRef] [PubMed]

Yu, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
[CrossRef] [PubMed]

Zapata-Rodríguez, C. J.

Zhang, C.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett.107(12), 126804 (2011).
[CrossRef] [PubMed]

Zhang, Y.

Zhou, G.

Zhu, S. N.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett.107(12), 126804 (2011).
[CrossRef] [PubMed]

Am. J. Phys.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys.47(3), 264–267 (1979).
[CrossRef]

Nat. Photonics

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
[CrossRef]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics2(11), 675–678 (2008).
[CrossRef]

Opt. Commun.

I. L. Tyler, B. Fischer, and R. J. Bell, “On the observation of surface magnetoplasmons,” Opt. Commun.8(2), 145–146 (1973).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B30(6), 3277–3282 (1984).
[CrossRef]

Phys. Rev. B Condens. Matter

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B Condens. Matter36(11), 5960–5967 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
[CrossRef] [PubMed]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett.105(25), 253901 (2010).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett.99(21), 213901 (2007).
[CrossRef] [PubMed]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett.107(11), 116802 (2011).
[CrossRef] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett.107(12), 126804 (2011).
[CrossRef] [PubMed]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett.28(22), 1455–1458 (1972).
[CrossRef]

Rep. Prog. Phys.

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970).
[CrossRef]

Surf. Sci. Rep.

M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep.41(1-8), 1–416 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic structure of Airy SMPs on the interface of a metal/semiconductor and a dielectric. The external magnetic field is applied along the y-axis.

Fig. 2
Fig. 2

Electric field distributions of the Airy SMPs on the planes perpendicular and parallel to the surface when ωc = 0.1ωp and ω = 0.8ωp. (a)-(c) Electric field distributions in the x-y plane when z = 0, 50λ, and 100λ, respectively. (d) Electric field distribution in the y-z plane when x = 0.

Fig. 3
Fig. 3

Dispersion relation of SMPs under different external magnetic field intensities. If the external magnetic field is along the -y-axis (denoted by B<0), the dispersion curve is red-shifted with the increase of the magnetic field. However, if the external magnetic field is along the + y-axis (denoted by B>0 in the inset), the dispersion curve is nearly unchanged.

Fig. 4
Fig. 4

Ballistic trajectory curves of the Airy SMPs when the magnetic field is applied along the –y-axis. The cyclotron frequencies are ωc = 0, 0.1ωp, 0.2ωp, and 0.25ωp, respectively. The incident frequency is ω = 0.85ωp. The inset shows the “gravity” g as a function of the external magnetic field when the magnetic field is applied in the + y-axis and –y-axis, respectively.

Fig. 5
Fig. 5

Electric field distributions of the Airy SMPs on the x = 0 plane with an incident frequency of ω = 0.85ωp. (a) No magnetic field is applied. (b) A magnetic field is applied along the + y-axis such that ωc = 0.25ωp. (c) A magnetic field is applied along the -y-axis such that ωc = 0.25ωp.

Fig. 6
Fig. 6

Comparison of theory (red lines) and FDTD simulation (blue lines) results of normalized electric field distributions of the Airy SMPs on the x = 0 plane at z = 50λ. The incident frequency is ω = 0.85ωp. Solid lines: field distributions when ωc = 0ωp. Dashed lines: field distributions when ωc = 0.25ωp for B<0.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

×(× E ) k 0 2 ε ˜ m E =0
ε ˜ m =[ ε xx 0 ε xz 0 ε yy 0 ε xz 0 ε xx ]
E x,y,z (I) (x,y,z) = A x,y,z ( y,z ) e α 1 x
ε V k smp 2 ε d k 0 2 + ε d k smp 2 ε V k 0 2 +i( ε d ε xz ε xx ) k smp =0
2 A ˜ x z 2 α 1 A ˜ z z +( ε xx k 0 2 k y 2 ) A ˜ x i k y α 1 A ˜ y + ε xz k 0 2 A ˜ z =0
2 A ˜ y z 2 i k y A ˜ z z i k y α 1 A ˜ x +( α 1 2 + ε yy k 0 2 ) A ˜ y =0
α 1 A ˜ x z +i k y A ˜ y z + k 0 2 ε xz A ˜ x ( k 0 2 ε xx + α 1 2 k y 2 ) A ˜ z =0
[ k 0 2 ε xx k y 2 κ 1 2 D 2 + ( k 0 2 ε xz ) 2 κ 1 2 + k 0 2 ε xx k y 2 i k y α 1 κ 1 2 D 2 + i k y k 0 2 ε xz κ 1 2 Di k y α 1 i k y α 1 κ 1 2 D 2 i k y k 0 2 ε xz κ 1 2 Di k y α 1 k 0 2 ε xx + α 1 2 κ 1 2 D 2 + α 1 2 + k 0 2 ε yy ]( A ˜ x A ˜ y )=0
Λ 2 = 1 2 [ ( κ 2 2 + κ 3 2 )± ( κ 2 2 κ 3 2 ) 2 4( κ 2 2 κ 1 2 ) ε yy ε xx k y 2 ]
Λ 1 =i k
Λ 2 =i( k smp ε xx + ε yy 4 ε xx k y 2 k smp )
A ˜ x = C 1 exp[ i( k smp ε xx + ε yy 4 ε xx k y 2 k smp )z ]
E x (I) (x,y,0)=Ai( y w 0 ) e ay/ w 0 e α 1 x
C 1 = w 0 exp[ (ai w 0 k y ) 3 3 ]
E x (I) = E 0 (I) Ai[ f 1 ( y,p ) ]exp[ f 2 ( y,p ) ] e α 1 x e i k smp z
f 1 ( y,p )= y w 0 p 2 +i2ap
f 2 ( y,p )=a y w 0 2a p 2 +i( 2 3 p 3 + a 2 p+ y w 0 p )
E z (I) = k smp 2 ε xx k 0 2 ε xz k 0 2 i k smp α 1 E 0 (I) Ai[ f 1 ( y,z ) ]exp[ f 2 ( y,z ) ] e α 1 x e i k smp z
E y (I) =j 1 w 0 k smp ε xz k 0 2 i k smp α 1 k smp 2 ε xx k 0 2 k smp 2 ε yy k 0 2 E 0 (I) exp[ f 2 ( y,z ) ] e α 1 x e i k smp z ×{ f 1 ( y,z ) π 3 K 2/3 [ 2 3 f 1 3/2 ( y,z ) ]+( ip+a )Ai[ f 1 ( y,z ) ] }
E x (II) = E 0 (II) Ai[ f 1 ( y,z ) ]exp[ f 2 ( y,z ) ] e α 2 x e i k smp z
E z (II) = k smp 2 ε d k 0 2 α 2 k smp ε d ( ε xx α 1 2 + ε xz 2 k 0 2 ) ε xx α 2 ( ε xz k smp i ε xx α 1 ) E 0 (II) ×Ai[ f 1 ( y,z ) ]exp[ f 2 ( y,z ) ] e α 2 x e i k smp z
E y (II) =j 1 w 0 ε d ε xz k smp i ε xx α 1 k smp 2 ε xx k 0 2 k smp 2 ε yy k 0 2 E 0 (II) exp[ f 2 ( y,z ) ] e α 2 x e i k smp z ×{ f 1 ( y,z ) π 3 K 2/3 [ 2 3 f 1 3/2 ( y,z ) ]+( ip+a )Ai[ f 1 ( y,z ) ] }
E 0 (I) = ε xz k 0 2 i k smp α 1 ε xz k smp 2 i ε xx k smp α 1
E 0 (II) = 1 ε d
y= 1 4 w 0 3 k smp 2 z 2
g= 2 y z 2 = 1 4 w 0 3 k smp 2

Metrics