Abstract

Single-mode optical waveguides in LiNbO3 substrate with loss as low as 0.17dB/cm were fabricated by a multi-energy low-dose ion implantation technology and cumulative annealing treatment. A waveguide Y-Branch splitter was demonstrated. Index profile in waveguide is described based on the ion implantation-induced damage profile, and propagation property in waveguide is simulated. Simulation results show a good consistence with the measured ones.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Th. Kersten and H. Boroffka, “A strip-waveguide light-distribution structure made by ion implantation into fused quartz,” Opt. Quantum Electron.8(3), 263–266 (1976).
    [CrossRef]
  2. G. L. Destefanis, P. D. Townsend, and J. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett.32(5), 293–294 (1978).
    [CrossRef]
  3. T. Bremer, W. Heiland, B. Hellermann, P. Hertel, E. Krätzig, and D. Kollewe, “Waveguides in KNbO3 by He+ implantation,” Ferroelectr. Lett.9(1), 11–14 (1988).
    [CrossRef]
  4. 4F. Lu, M.-Q. Meng, K.-M. Wang, X.-D. Liu, H.-C. Chen, and D.-Y. Shen, “Planar optical waveguide in Cu-doped potassium sodium strontium barium niobate crystal Formed by mega-electron-volt He-ion implantation,” Opt. Lett.22(3), 163–165 (1997).
    [CrossRef] [PubMed]
  5. P. D. Townsend and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
  6. F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
    [CrossRef]
  7. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt.40(22), 3759–3761 (2001).
    [CrossRef] [PubMed]
  8. X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, X. Liu, Z. Qin, and Y. Ma, “Optical confinement achieved in ZnO crystal by O+ ions implantation: analysis of waveguide formation and properties,” Opt. Express19(8), 7139–7146 (2011).
    [CrossRef] [PubMed]
  9. G. Vázquez, J. Rickards, G. Lifante, M. Domenech, and E. Cantelar, “Low dose carbon implanted waveguides in Nd:YAG,” Opt. Express11(11), 1291–1296 (2003).
    [CrossRef] [PubMed]
  10. L. Mutter, M. Jazbinsek, C. Herzog, and P. Günter, “Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals,” Opt. Express16(2), 731–739 (2008).
    [CrossRef] [PubMed]
  11. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
    [CrossRef]
  12. X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005).
    [CrossRef]
  13. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36(3), 143–147 (1985).
    [CrossRef]
  14. J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys.108(3), 033105–033109 (2010).
    [CrossRef]
  15. A. Majkić, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express16(12), 8769–8779 (2008).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys.108(3), 033105–033109 (2010).
[CrossRef]

2008 (2)

2007 (1)

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

2005 (1)

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005).
[CrossRef]

2003 (1)

2002 (1)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

2001 (1)

1997 (1)

1988 (1)

T. Bremer, W. Heiland, B. Hellermann, P. Hertel, E. Krätzig, and D. Kollewe, “Waveguides in KNbO3 by He+ implantation,” Ferroelectr. Lett.9(1), 11–14 (1988).
[CrossRef]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36(3), 143–147 (1985).
[CrossRef]

1978 (1)

G. L. Destefanis, P. D. Townsend, and J. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett.32(5), 293–294 (1978).
[CrossRef]

1976 (1)

R. Th. Kersten and H. Boroffka, “A strip-waveguide light-distribution structure made by ion implantation into fused quartz,” Opt. Quantum Electron.8(3), 263–266 (1976).
[CrossRef]

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Bentini, G. G.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Bianconi, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Boroffka, H.

R. Th. Kersten and H. Boroffka, “A strip-waveguide light-distribution structure made by ion implantation into fused quartz,” Opt. Quantum Electron.8(3), 263–266 (1976).
[CrossRef]

Bremer, T.

T. Bremer, W. Heiland, B. Hellermann, P. Hertel, E. Krätzig, and D. Kollewe, “Waveguides in KNbO3 by He+ implantation,” Ferroelectr. Lett.9(1), 11–14 (1988).
[CrossRef]

Cantelar, E.

Chen, F.

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt.40(22), 3759–3761 (2001).
[CrossRef] [PubMed]

Chen, H.-C.

Chen, M.

Chiarini, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Destefanis, G. L.

G. L. Destefanis, P. D. Townsend, and J. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett.32(5), 293–294 (1978).
[CrossRef]

Domenech, M.

Fu, G.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005).
[CrossRef]

Gailliard, J.

G. L. Destefanis, P. D. Townsend, and J. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett.32(5), 293–294 (1978).
[CrossRef]

Gao, L.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005).
[CrossRef]

Günter, P.

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Heiland, W.

T. Bremer, W. Heiland, B. Hellermann, P. Hertel, E. Krätzig, and D. Kollewe, “Waveguides in KNbO3 by He+ implantation,” Ferroelectr. Lett.9(1), 11–14 (1988).
[CrossRef]

Hellermann, B.

T. Bremer, W. Heiland, B. Hellermann, P. Hertel, E. Krätzig, and D. Kollewe, “Waveguides in KNbO3 by He+ implantation,” Ferroelectr. Lett.9(1), 11–14 (1988).
[CrossRef]

Hertel, P.

T. Bremer, W. Heiland, B. Hellermann, P. Hertel, E. Krätzig, and D. Kollewe, “Waveguides in KNbO3 by He+ implantation,” Ferroelectr. Lett.9(1), 11–14 (1988).
[CrossRef]

Herzog, C.

Hu, H.

Huang, M. B.

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys.108(3), 033105–033109 (2010).
[CrossRef]

Jazbinsek, M.

Kersten, R. Th.

R. Th. Kersten and H. Boroffka, “A strip-waveguide light-distribution structure made by ion implantation into fused quartz,” Opt. Quantum Electron.8(3), 263–266 (1976).
[CrossRef]

Koechlin, M.

Kollewe, D.

T. Bremer, W. Heiland, B. Hellermann, P. Hertel, E. Krätzig, and D. Kollewe, “Waveguides in KNbO3 by He+ implantation,” Ferroelectr. Lett.9(1), 11–14 (1988).
[CrossRef]

Krätzig, E.

T. Bremer, W. Heiland, B. Hellermann, P. Hertel, E. Krätzig, and D. Kollewe, “Waveguides in KNbO3 by He+ implantation,” Ferroelectr. Lett.9(1), 11–14 (1988).
[CrossRef]

Li, S.-L.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005).
[CrossRef]

Lifante, G.

Liu, H.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005).
[CrossRef]

Liu, X.

Liu, X.-D.

Lu, F.

Ma, H.-J.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005).
[CrossRef]

Ma, Y.

Ma, Y. J.

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys.108(3), 033105–033109 (2010).
[CrossRef]

Majkic, A.

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Meng, M.-Q.

Ming, X.

Ming, X. B.

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys.108(3), 033105–033109 (2010).
[CrossRef]

Mutter, L.

Nie, R.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005).
[CrossRef]

Poberaj, G.

Qin, Z.

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36(3), 143–147 (1985).
[CrossRef]

Rickards, J.

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Shen, D.-Y.

Shi, B.-R.

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36(3), 143–147 (1985).
[CrossRef]

Townsend, P. D.

G. L. Destefanis, P. D. Townsend, and J. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett.32(5), 293–294 (1978).
[CrossRef]

Vázquez, G.

Wang, K.-M.

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt.40(22), 3759–3761 (2001).
[CrossRef] [PubMed]

4F. Lu, M.-Q. Meng, K.-M. Wang, X.-D. Liu, H.-C. Chen, and D.-Y. Shen, “Planar optical waveguide in Cu-doped potassium sodium strontium barium niobate crystal Formed by mega-electron-volt He-ion implantation,” Opt. Lett.22(3), 163–165 (1997).
[CrossRef] [PubMed]

Wang, X.-L.

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005).
[CrossRef]

Yin, J.

Yin, J. J.

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys.108(3), 033105–033109 (2010).
[CrossRef]

Zhang, S.

Appl. Opt. (1)

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36(3), 143–147 (1985).
[CrossRef]

Appl. Phys. Lett. (2)

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005).
[CrossRef]

G. L. Destefanis, P. D. Townsend, and J. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett.32(5), 293–294 (1978).
[CrossRef]

Ferroelectr. Lett. (1)

T. Bremer, W. Heiland, B. Hellermann, P. Hertel, E. Krätzig, and D. Kollewe, “Waveguides in KNbO3 by He+ implantation,” Ferroelectr. Lett.9(1), 11–14 (1988).
[CrossRef]

J. Appl. Phys. (2)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys.108(3), 033105–033109 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

Opt. Quantum Electron. (1)

R. Th. Kersten and H. Boroffka, “A strip-waveguide light-distribution structure made by ion implantation into fused quartz,” Opt. Quantum Electron.8(3), 263–266 (1976).
[CrossRef]

Other (1)

P. D. Townsend and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) a schematic illustration of index profile in typical ion-implanted LiNbO3 waveguide; (b) the ne index profile in 7-µm width channel waveguide.

Fig. 2
Fig. 2

(left) the measured Fabry-Perot transmission resonances/fringes from 7-µm channel waveguide; (right) the measured losses of waveguides with different waveguide width under annealing condition of 200°C, 20min; 250°C, 40min and 270°C min.

Fig. 3
Fig. 3

(left) the measured near field pattern of output light from a 7-µm-wide channel waveguide in z-cut LiNbO3;(right) the simulated transverse field profile of TM mode after light propagate at 2000μm.

Fig. 4
Fig. 4

(a) and (b) are the measured output near field pattern from Y-branch structure; (c) and (d) are the simulated output near field pattern and the light propagation path (waveguide width in (d) is normalized to 2μm for illustration). In the simulation, waveguide width of 13μm, angular separation of two divergent channels of 1.1° and the separation of two parallel branches of 30μm are used.

Metrics