Abstract

We investigate the dependence of Brillouin gain spectra on large strain of > 20% in a perfluorinated graded-index polymer optical fiber, and prove, for the first time, that the dependence of Brillouin frequency shift (BFS) is highly non-monotonic. We predict that temperature sensors even with zero strain sensitivity can be implemented by use of this non-monotonic nature. Meanwhile, the Stokes power decreases rapidly when the applied strain is > ~10%. This behavior seems to originate from the propagation loss dependence on large strain. By exploiting the Stokes power dependence, we can probably solve the problem of how to identify the applied strain, when the identification is difficult only by BFS because of its non-monotonic nature.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.7(8), 1170–1176 (1989).
    [CrossRef]
  2. T. Kurashima, T. Horiguchi, H. Izumita, and M. Tateda, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.E76-B, 382–390 (1993).
  3. D. Garus, K. Krebber, F. Schliep, and T. Gogolla, “Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis,” Opt. Lett.21(17), 1402–1404 (1996).
    [CrossRef] [PubMed]
  4. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – Proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).
  5. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express16(16), 12148–12153 (2008).
    [CrossRef] [PubMed]
  6. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC Press, 2006).
  7. K. Nakamura, I. R. Husdi, and S. Ueha, “A distributed strain sensor with the memory effect based on the POF OTDR,” Proc. SPIE5855, 807–810 (2005).
    [CrossRef]
  8. N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Measurement of acoustic velocity in poly(methyl methacrylate)-based polymer optical fiber for Brillouin frequency shift estimation,” Appl. Phys. Express4(10), 102501 (2011), doi:.
    [CrossRef]
  9. N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Dependence of Brillouin frequency shift on temperature and strain in poly(methyl methacrylate)-based polymer optical fibers estimated by acoustic velocity measurement,” Appl. Phys. Express5(3), 032502 (2012), doi:.
    [CrossRef]
  10. Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett.97(2), 021103 (2010), doi:.
    [CrossRef]
  11. Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique,” Opt. Lett.36(12), 2378–2380 (2011).
    [CrossRef] [PubMed]
  12. Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter,” IEEE Photon. Technol. Lett.23(24), 1863–1865 (2011).
    [CrossRef]
  13. Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett.35(23), 3985–3987 (2010).
    [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).
  15. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett.1(5), 107–108 (1989).
    [CrossRef]
  16. Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun.283(11), 2438–2441 (2010).
    [CrossRef]
  17. L. Zou, X. Bao, S. Afshar V, and L. Chen, “Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett.29(13), 1485–1487 (2004).
    [CrossRef] [PubMed]
  18. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
    [CrossRef]
  19. O. Frank and J. Lehmann, “Determination of various deformation processes in impact-modified PMMA at strain rates up to 105%/min,” Colloid Polym. Sci.264(6), 473–481 (1986).
    [CrossRef]
  20. R. Hill, The Mathematical Theory of Plasticity (Oxford U. Press, 1950).

2012 (1)

N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Dependence of Brillouin frequency shift on temperature and strain in poly(methyl methacrylate)-based polymer optical fibers estimated by acoustic velocity measurement,” Appl. Phys. Express5(3), 032502 (2012), doi:.
[CrossRef]

2011 (3)

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique,” Opt. Lett.36(12), 2378–2380 (2011).
[CrossRef] [PubMed]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter,” IEEE Photon. Technol. Lett.23(24), 1863–1865 (2011).
[CrossRef]

N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Measurement of acoustic velocity in poly(methyl methacrylate)-based polymer optical fiber for Brillouin frequency shift estimation,” Appl. Phys. Express4(10), 102501 (2011), doi:.
[CrossRef]

2010 (3)

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett.35(23), 3985–3987 (2010).
[CrossRef] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun.283(11), 2438–2441 (2010).
[CrossRef]

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett.97(2), 021103 (2010), doi:.
[CrossRef]

2008 (1)

2005 (1)

K. Nakamura, I. R. Husdi, and S. Ueha, “A distributed strain sensor with the memory effect based on the POF OTDR,” Proc. SPIE5855, 807–810 (2005).
[CrossRef]

2004 (1)

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – Proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

1996 (1)

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, and M. Tateda, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.E76-B, 382–390 (1993).

1989 (2)

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.7(8), 1170–1176 (1989).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett.1(5), 107–108 (1989).
[CrossRef]

1986 (1)

O. Frank and J. Lehmann, “Determination of various deformation processes in impact-modified PMMA at strain rates up to 105%/min,” Colloid Polym. Sci.264(6), 473–481 (1986).
[CrossRef]

Afshar V, S.

Bao, X.

Chen, L.

Frank, O.

O. Frank and J. Lehmann, “Determination of various deformation processes in impact-modified PMMA at strain rates up to 105%/min,” Colloid Polym. Sci.264(6), 473–481 (1986).
[CrossRef]

Garus, D.

Gogolla, T.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – Proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).

Hayashi, N.

N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Dependence of Brillouin frequency shift on temperature and strain in poly(methyl methacrylate)-based polymer optical fibers estimated by acoustic velocity measurement,” Appl. Phys. Express5(3), 032502 (2012), doi:.
[CrossRef]

N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Measurement of acoustic velocity in poly(methyl methacrylate)-based polymer optical fiber for Brillouin frequency shift estimation,” Appl. Phys. Express4(10), 102501 (2011), doi:.
[CrossRef]

He, Z.

Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun.283(11), 2438–2441 (2010).
[CrossRef]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express16(16), 12148–12153 (2008).
[CrossRef] [PubMed]

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, and M. Tateda, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.E76-B, 382–390 (1993).

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.7(8), 1170–1176 (1989).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett.1(5), 107–108 (1989).
[CrossRef]

Hotate, K.

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique,” Opt. Lett.36(12), 2378–2380 (2011).
[CrossRef] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun.283(11), 2438–2441 (2010).
[CrossRef]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express16(16), 12148–12153 (2008).
[CrossRef] [PubMed]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – Proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).

Husdi, I. R.

K. Nakamura, I. R. Husdi, and S. Ueha, “A distributed strain sensor with the memory effect based on the POF OTDR,” Proc. SPIE5855, 807–810 (2005).
[CrossRef]

Ishigure, T.

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique,” Opt. Lett.36(12), 2378–2380 (2011).
[CrossRef] [PubMed]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter,” IEEE Photon. Technol. Lett.23(24), 1863–1865 (2011).
[CrossRef]

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, and M. Tateda, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.E76-B, 382–390 (1993).

Kishi, M.

Koyama, D.

N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Dependence of Brillouin frequency shift on temperature and strain in poly(methyl methacrylate)-based polymer optical fibers estimated by acoustic velocity measurement,” Appl. Phys. Express5(3), 032502 (2012), doi:.
[CrossRef]

N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Measurement of acoustic velocity in poly(methyl methacrylate)-based polymer optical fiber for Brillouin frequency shift estimation,” Appl. Phys. Express4(10), 102501 (2011), doi:.
[CrossRef]

Krebber, K.

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, and M. Tateda, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.E76-B, 382–390 (1993).

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett.1(5), 107–108 (1989).
[CrossRef]

Lehmann, J.

O. Frank and J. Lehmann, “Determination of various deformation processes in impact-modified PMMA at strain rates up to 105%/min,” Colloid Polym. Sci.264(6), 473–481 (1986).
[CrossRef]

Mizuno, Y.

N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Dependence of Brillouin frequency shift on temperature and strain in poly(methyl methacrylate)-based polymer optical fibers estimated by acoustic velocity measurement,” Appl. Phys. Express5(3), 032502 (2012), doi:.
[CrossRef]

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique,” Opt. Lett.36(12), 2378–2380 (2011).
[CrossRef] [PubMed]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter,” IEEE Photon. Technol. Lett.23(24), 1863–1865 (2011).
[CrossRef]

N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Measurement of acoustic velocity in poly(methyl methacrylate)-based polymer optical fiber for Brillouin frequency shift estimation,” Appl. Phys. Express4(10), 102501 (2011), doi:.
[CrossRef]

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett.97(2), 021103 (2010), doi:.
[CrossRef]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett.35(23), 3985–3987 (2010).
[CrossRef] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun.283(11), 2438–2441 (2010).
[CrossRef]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express16(16), 12148–12153 (2008).
[CrossRef] [PubMed]

Nakamura, K.

N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Dependence of Brillouin frequency shift on temperature and strain in poly(methyl methacrylate)-based polymer optical fibers estimated by acoustic velocity measurement,” Appl. Phys. Express5(3), 032502 (2012), doi:.
[CrossRef]

N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Measurement of acoustic velocity in poly(methyl methacrylate)-based polymer optical fiber for Brillouin frequency shift estimation,” Appl. Phys. Express4(10), 102501 (2011), doi:.
[CrossRef]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter,” IEEE Photon. Technol. Lett.23(24), 1863–1865 (2011).
[CrossRef]

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique,” Opt. Lett.36(12), 2378–2380 (2011).
[CrossRef] [PubMed]

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett.97(2), 021103 (2010), doi:.
[CrossRef]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett.35(23), 3985–3987 (2010).
[CrossRef] [PubMed]

K. Nakamura, I. R. Husdi, and S. Ueha, “A distributed strain sensor with the memory effect based on the POF OTDR,” Proc. SPIE5855, 807–810 (2005).
[CrossRef]

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

Schliep, F.

Tateda, M.

T. Kurashima, T. Horiguchi, H. Izumita, and M. Tateda, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.E76-B, 382–390 (1993).

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.7(8), 1170–1176 (1989).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett.1(5), 107–108 (1989).
[CrossRef]

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

Ueha, S.

K. Nakamura, I. R. Husdi, and S. Ueha, “A distributed strain sensor with the memory effect based on the POF OTDR,” Proc. SPIE5855, 807–810 (2005).
[CrossRef]

Zou, L.

Zou, W.

Appl. Phys. Express (2)

N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Measurement of acoustic velocity in poly(methyl methacrylate)-based polymer optical fiber for Brillouin frequency shift estimation,” Appl. Phys. Express4(10), 102501 (2011), doi:.
[CrossRef]

N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Dependence of Brillouin frequency shift on temperature and strain in poly(methyl methacrylate)-based polymer optical fibers estimated by acoustic velocity measurement,” Appl. Phys. Express5(3), 032502 (2012), doi:.
[CrossRef]

Appl. Phys. Lett. (1)

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett.97(2), 021103 (2010), doi:.
[CrossRef]

Colloid Polym. Sci. (1)

O. Frank and J. Lehmann, “Determination of various deformation processes in impact-modified PMMA at strain rates up to 105%/min,” Colloid Polym. Sci.264(6), 473–481 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett.1(5), 107–108 (1989).
[CrossRef]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter,” IEEE Photon. Technol. Lett.23(24), 1863–1865 (2011).
[CrossRef]

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, and M. Tateda, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.E76-B, 382–390 (1993).

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – Proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).

J. Lightwave Technol. (2)

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.7(8), 1170–1176 (1989).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

Opt. Commun. (1)

Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun.283(11), 2438–2441 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Proc. SPIE (1)

K. Nakamura, I. R. Husdi, and S. Ueha, “A distributed strain sensor with the memory effect based on the POF OTDR,” Proc. SPIE5855, 807–810 (2005).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).

R. Hill, The Mathematical Theory of Plasticity (Oxford U. Press, 1950).

M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measured stress-strain curve of the PFGI-POF.

Fig. 2
Fig. 2

Measured large-strain dependences of (a) the BGS, (b) the BFS, and (c) the Stokes power in the PFGI-POF.

Fig. 3
Fig. 3

Measured large-strain dependences of (a) the propagation loss and (b) the effective length in the PFGI-POF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

υ Β = 2n υ A λ ,
L eff = 1- e -αL α ,

Metrics