Abstract

In this article we report on metamaterial-based narrowband thermal terahertz (THz) emitters with a bandwidth of about 1 THz. Single band emitters designed to radiate in the 4 to 8 THz range were found to emit as high as 36 W/m2 when operated at 400 °C. Emission into two well-separated THz bands was also demonstrated by using metamaterial structures featuring more complex unit cells. Imaging of heated emitters using a microbolometer camera fitted with THz optics clearly showed the expected higher emissivity from the metamaterial structure compared to low-emissivity of the surrounding aluminum.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: A time of reckoning future applications?” in Proceedings of IEEE Vol. 93(10) Special Issue on: Blue Sky Electronic Technology (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 1722–1743.
  2. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
    [CrossRef]
  3. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1(9), 517–525 (2007).
    [CrossRef]
  4. I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology” in Proceedings of IEEE Vol. 95(8) Special issue on: T-Ray Imaging Sensing, & Retection (Institute of Electrical and Electronics Engineers, New York, 2007), 1611–1623.
  5. A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev.19(3), 346–404 (2011).
    [CrossRef]
  6. S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(1), 38–47 (2011).
    [CrossRef]
  7. A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
    [CrossRef]
  8. B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett.33(5), 440–442 (2008).
    [CrossRef] [PubMed]
  9. M. S. Shur and V. Ryzhii, “ New concepts for submillimeter-wave detection and generation,” in Proceedings of 11th GaAs applications symposium, (Munich, 2003), 301–304.
  10. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature420(6912), 153–156 (2002).
    [CrossRef] [PubMed]
  11. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
    [CrossRef] [PubMed]
  12. M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunneling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett.99(23), 233506 (2011).
    [CrossRef]
  13. H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
    [CrossRef]
  14. Y. T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S. C. Lee, “Narrow bandwidth midinfrared waveguide thermal emitters,” IEEE Photon. Technol. Lett.22(15), 1159–1161 (2010).
    [CrossRef]
  15. S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett.94(7), 071113 (2009).
    [CrossRef]
  16. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
    [CrossRef] [PubMed]
  17. J. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
    [CrossRef]
  18. M. K. Gunde and M. Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi A183, 439–449 (2001).
    [CrossRef]
  19. D. Y. Smith, E. Shiles, and M. Inokuti, “Silicon Dioxide (SiO2),” in Handbook of Optical Constants of Solids Part 2, E. D. Palik, ed. (Academic, 1998).
  20. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt.46(33), 8118–8133 (2007).
    [CrossRef] [PubMed]
  21. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
    [CrossRef] [PubMed]
  22. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20(7), 7165–7172 (2012).
    [CrossRef] [PubMed]
  23. D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
    [CrossRef]
  24. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
    [CrossRef] [PubMed]
  25. Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17(22), 20256–20265 (2009).
    [CrossRef] [PubMed]
  26. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett.34(19), 3012–3014 (2009).
    [CrossRef] [PubMed]
  27. F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
    [CrossRef]
  28. G. Kirchhoff, “On the relation between the radiating and the absorbing powers of different bodies for light and heat,” Philos. Mag.20, 1–21 (1860).
  29. S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE Jour. Quan. Elec.44(12), 1139–1144 (2008).
    [CrossRef]
  30. J. M. Palmer and B. G. Grant, “The Art of Radiometry,” ed. (SPIE Press, 2010).
  31. R. A. Wood, “Monolithic silicon microbolometer arrays,” in Semiconductors and Semimetals47: Uncooled Infrared Imaging Arrays and Systems, P. W. Kruse and D.D. Skatrud, eds. (Academic Press, 1997).

2012 (3)

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20(7), 7165–7172 (2012).
[CrossRef] [PubMed]

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

2011 (5)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

J. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunneling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett.99(23), 233506 (2011).
[CrossRef]

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev.19(3), 346–404 (2011).
[CrossRef]

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(1), 38–47 (2011).
[CrossRef]

2010 (3)

Y. T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S. C. Lee, “Narrow bandwidth midinfrared waveguide thermal emitters,” IEEE Photon. Technol. Lett.22(15), 1159–1161 (2010).
[CrossRef]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (3)

2007 (2)

2006 (1)

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

2005 (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

2002 (2)

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature420(6912), 153–156 (2002).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

2001 (1)

M. K. Gunde and M. Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi A183, 439–449 (2001).
[CrossRef]

1860 (1)

G. Kirchhoff, “On the relation between the radiating and the absorbing powers of different bodies for light and heat,” Philos. Mag.20, 1–21 (1860).

Alves, F.

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

Araci, I. E.

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett.94(7), 071113 (2009).
[CrossRef]

Averitt, R. D.

Azad, A. K.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Ban, D.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE Jour. Quan. Elec.44(12), 1139–1144 (2008).
[CrossRef]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Behnken, B. N.

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Bingham, C. M.

Boucherif, A.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE Jour. Quan. Elec.44(12), 1139–1144 (2008).
[CrossRef]

Brückl, H.

Carr, G. L.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature420(6912), 153–156 (2002).
[CrossRef] [PubMed]

Chamberlin, D. R.

Chang, P.-E.

Y. T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S. C. Lee, “Narrow bandwidth midinfrared waveguide thermal emitters,” IEEE Photon. Technol. Lett.22(15), 1159–1161 (2010).
[CrossRef]

Chang, Y.-T.

Y. T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S. C. Lee, “Narrow bandwidth midinfrared waveguide thermal emitters,” IEEE Photon. Technol. Lett.22(15), 1159–1161 (2010).
[CrossRef]

Chen, F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Chen, H.-H.

Y. T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S. C. Lee, “Narrow bandwidth midinfrared waveguide thermal emitters,” IEEE Photon. Technol. Lett.22(15), 1159–1161 (2010).
[CrossRef]

Chen, H.-T.

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20(7), 7165–7172 (2012).
[CrossRef] [PubMed]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Chen, Z. N.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Chua, S. J.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Chum, C. C.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Cojocari, O.

M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunneling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett.99(23), 233506 (2011).
[CrossRef]

Danner, A. J.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Dupont, E.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE Jour. Quan. Elec.44(12), 1139–1144 (2008).
[CrossRef]

Faist, J.

Fathololoumi, S.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE Jour. Quan. Elec.44(12), 1139–1144 (2008).
[CrossRef]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Feiginov, M.

M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunneling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett.99(23), 233506 (2011).
[CrossRef]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Grbovic, D.

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

Gunde, M. K.

M. K. Gunde and M. Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi A183, 439–449 (2001).
[CrossRef]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Huang, H.-F.

Y. T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S. C. Lee, “Narrow bandwidth midinfrared waveguide thermal emitters,” IEEE Photon. Technol. Lett.22(15), 1159–1161 (2010).
[CrossRef]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Jiang, Y.-W.

Y. T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S. C. Lee, “Narrow bandwidth midinfrared waveguide thermal emitters,” IEEE Photon. Technol. Lett.22(15), 1159–1161 (2010).
[CrossRef]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Jonasz, M.

Jordan, K.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature420(6912), 153–156 (2002).
[CrossRef] [PubMed]

Karunasiri, G.

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett.33(5), 440–442 (2008).
[CrossRef] [PubMed]

Kearney, B.

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

Kirchhoff, G.

G. Kirchhoff, “On the relation between the radiating and the absorbing powers of different bodies for light and heat,” Philos. Mag.20, 1–21 (1860).

Kitamura, R.

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Kropachev, A.

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett.94(7), 071113 (2009).
[CrossRef]

Kumar, S.

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(1), 38–47 (2011).
[CrossRef]

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Laframboise, S. R.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE Jour. Quan. Elec.44(12), 1139–1144 (2008).
[CrossRef]

Landy, N. I.

Lavrik, N. V.

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

Lee, A. W. M.

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Lee, S. C.

Y. T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S. C. Lee, “Narrow bandwidth midinfrared waveguide thermal emitters,” IEEE Photon. Technol. Lett.22(15), 1159–1161 (2010).
[CrossRef]

Li, Y. X.

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Liu, H. C.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE Jour. Quan. Elec.44(12), 1139–1144 (2008).
[CrossRef]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Liu, Y. L.

Luo, H.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE Jour. Quan. Elec.44(12), 1139–1144 (2008).
[CrossRef]

Macek, M.

M. K. Gunde and M. Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi A183, 439–449 (2001).
[CrossRef]

Maier, S. A.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Maier, T.

Martin, M. C.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature420(6912), 153–156 (2002).
[CrossRef] [PubMed]

Mason, J. J. A.

J. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

McKinney, W. R.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature420(6912), 153–156 (2002).
[CrossRef] [PubMed]

Meissner, P.

M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunneling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett.99(23), 233506 (2011).
[CrossRef]

Neil, G. R.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature420(6912), 153–156 (2002).
[CrossRef] [PubMed]

Norwood, R. A.

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett.94(7), 071113 (2009).
[CrossRef]

O’Hara, J. F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
[CrossRef]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Peyghambarian, N.

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett.94(7), 071113 (2009).
[CrossRef]

Pilon, L.

Qing Hu,

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Reno, J. L.

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Robrish, P. R.

Rogalski, A.

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev.19(3), 346–404 (2011).
[CrossRef]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Shchegolkov, D. Y.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
[CrossRef]

Si, G. Y.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Simakov, E. I.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
[CrossRef]

Sizov, F.

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev.19(3), 346–404 (2011).
[CrossRef]

Skotheim, T.

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett.94(7), 071113 (2009).
[CrossRef]

Smith, S.

J. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Sun, M.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Sydlo, C.

M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunneling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett.99(23), 233506 (2011).
[CrossRef]

Tanoto, H.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Tao, H.

Tay, S.

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett.94(7), 071113 (2009).
[CrossRef]

Taylor, A. J.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Teng, J. H.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Tzuang, D.-C.

Y. T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S. C. Lee, “Narrow bandwidth midinfrared waveguide thermal emitters,” IEEE Photon. Technol. Lett.22(15), 1159–1161 (2010).
[CrossRef]

Wang, B.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Wasserman, D.

J. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Wen, Q. Y.

Wil, B. S.

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1(9), 517–525 (2007).
[CrossRef]

Williams, G. P.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature420(6912), 153–156 (2002).
[CrossRef] [PubMed]

Wu, Q. Y.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Wu, Y. T.

Y. T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S. C. Lee, “Narrow bandwidth midinfrared waveguide thermal emitters,” IEEE Photon. Technol. Lett.22(15), 1159–1161 (2010).
[CrossRef]

Xie, Y. S.

Yang, Q. H.

Zhang, H. W.

Zhang, X.

Zhou, J.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunneling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett.99(23), 233506 (2011).
[CrossRef]

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett.94(7), 071113 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(1), 38–47 (2011).
[CrossRef]

IEEE Jour. Quan. Elec. (1)

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE Jour. Quan. Elec.44(12), 1139–1144 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Y. T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S. C. Lee, “Narrow bandwidth midinfrared waveguide thermal emitters,” IEEE Photon. Technol. Lett.22(15), 1159–1161 (2010).
[CrossRef]

Nat. Photonics (2)

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1(9), 517–525 (2007).
[CrossRef]

Nature (2)

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature420(6912), 153–156 (2002).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opto-Electron. Rev. (1)

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev.19(3), 346–404 (2011).
[CrossRef]

Philos. Mag. (1)

G. Kirchhoff, “On the relation between the radiating and the absorbing powers of different bodies for light and heat,” Philos. Mag.20, 1–21 (1860).

Phys. Rev. B (1)

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

M. K. Gunde and M. Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi A183, 439–449 (2001).
[CrossRef]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Other (6)

D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: A time of reckoning future applications?” in Proceedings of IEEE Vol. 93(10) Special Issue on: Blue Sky Electronic Technology (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 1722–1743.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology” in Proceedings of IEEE Vol. 95(8) Special issue on: T-Ray Imaging Sensing, & Retection (Institute of Electrical and Electronics Engineers, New York, 2007), 1611–1623.

M. S. Shur and V. Ryzhii, “ New concepts for submillimeter-wave detection and generation,” in Proceedings of 11th GaAs applications symposium, (Munich, 2003), 301–304.

D. Y. Smith, E. Shiles, and M. Inokuti, “Silicon Dioxide (SiO2),” in Handbook of Optical Constants of Solids Part 2, E. D. Palik, ed. (Academic, 1998).

J. M. Palmer and B. G. Grant, “The Art of Radiometry,” ed. (SPIE Press, 2010).

R. A. Wood, “Monolithic silicon microbolometer arrays,” in Semiconductors and Semimetals47: Uncooled Infrared Imaging Arrays and Systems, P. W. Kruse and D.D. Skatrud, eds. (Academic Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Metamaterial structures comprised of periodically distributed Al squares placed on top of a SiO2 film backed by an Al ground plane, used for single band THz emitters. (a) Schematic diagram of a periodic unit cell used for finite element simulation. (b) Optical micrograph of a fabricated emitter showing the periodic array of Al squares. The inset shows the dimension of Al squares of each sample.

Fig. 2
Fig. 2

Spectral absorptance of the metamaterial samples A, B and C. Solid lines represent the measured absorptance with peaks at 4.1, 5.4 and 7.8 THz respectively. Dashed lines represent the finite element simulation results.

Fig. 3
Fig. 3

Measured emissivity of the metamaterial samples A, B and C at 400 °C. Emissivity exhibits peaks at 4.1, 5.4 and 7.8 THz, respectively.

Fig. 4
Fig. 4

Spectral irradiance of Sample A, measured at 140, 280 and 400 °C. The inset shows that the measured peak emission (solid squares) depends linearly with temperature (solid line).

Fig. 5
Fig. 5

Radiant exitance of the dual band metamaterial (sample D) at 400 °C. The dashed line represents the blackbody curve at the same temperature. The inset shows the metamaterial pattern with two different size squares (10 and 18 μm) distributed in a tile like arrangement.

Fig. 6
Fig. 6

THz images of metamaterial samples B and C heated to 400 °C. (a) Picture taken by a microbolometer camera fitted with THZ optics. (b) Corresponding picture taken by a standard visible digital camera. (c) Spectral transmittance of Tsurupica lens (dashed line) along with irradiance spectra of the sample C (blue solid line) and a uniform Al film (red solid line). The inset in (c) shows the Tsurupica transmittance extended to IR range.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P( ν )= 2h c 2 ε( ν ) ν 3 exp[ hν kT ]1 dν,
P( ν ) 2kT ν 2 c 2 .

Metrics