Abstract

We report on the investigation on harmonic-seeded remote laser emissions at 391 nm wavelength from strong-field ionized nitrogen molecules in three different gas mixtures, i.e., N2-Ar, N2-Xe and N2-Ne. We observed a decrease in the remote laser intensity in the N2-Xe mixture because of the decreased clamped intensity in the filament; whereas in the N2-Ne mixture, the remote laser intensity slightly increases because of the increased clamped intensity within the filament. Remarkably, although the clamped intensity in the filament remains nearly unchanged in the N2-Ar mixture because of the similar ionization potentials of N2 and Ar, a significant enhancement of the lasing emission is realized in the N2-Ar mixture. The enhancement is attributed to the stronger third harmonic seed, and longer gain medium due to the extended filament.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. S. Mathias and J. T. Parker, “Stimulated emission in the band spectrum of nitrogen,” Appl. Phys. Lett.3(1), 16–18 (1963).
    [CrossRef]
  2. H. G. Heard, “Ultra-violet gas laser at room temperature,” Nature200(4907), 667 (1963).
    [CrossRef]
  3. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett.22(5), 304–306 (1997).
    [CrossRef] [PubMed]
  4. H. R. Lange, G. Grillon, J.-F. Ripoche, M. A. Franco, B. Lamouroux, B. S. Prade, A. Mysyrowicz, E. T. J. Nibbering, and A. Chiron, “Anomalous long-range propagation of femtosecond laser pulses through air: moving focus or pulse self-guiding?” Opt. Lett.23(2), 120–122 (1998).
    [CrossRef] [PubMed]
  5. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
    [CrossRef] [PubMed]
  6. Q. Luo, W. Liu, and S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B76(3), 337–340 (2003).
    [CrossRef]
  7. M. N. Shneider, A. Baltuška, and A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys.110(8), 083112 (2011).
    [CrossRef]
  8. D. Kartashov, S. Ališauskas, A. Pugzlys, A. Baltuška, M. Shneider, and A. Zheltikov, “Free-space nitrogen laser from a mid-infrared filament,” in Research in Optical Sciences, OSA Technical Digest (Optical Society of America), paper HW3C.2 (2012), http://www.opticsinfobase.org/abstract.cfm?URI=HILAS-2012-HW3C.2 .
  9. J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys.111(3), 033105 (2012).
    [CrossRef]
  10. V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7806–7811 (2005).
    [CrossRef] [PubMed]
  11. P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
    [CrossRef] [PubMed]
  12. P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett.98(21), 211102 (2011).
    [CrossRef]
  13. A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
    [CrossRef] [PubMed]
  14. J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
    [CrossRef]
  15. W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
    [CrossRef]
  16. J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
    [CrossRef]
  17. G. O. Ariunbold, P. Polynkin, and J. V. Moloney, “Third and fifth harmonic generation by tightly focused femtosecond pulses at 2.2 μm wavelength in air,” Opt. Express20(2), 1662–1667 (2012).
    [CrossRef] [PubMed]
  18. H. Xu, H. Xiong, R. Li, Y. Cheng, Z. Xu, and S. L. Chin, “X-shaped third harmonic generated by ultrashort infrared pulse filamentation in air,” Appl. Phys. Lett.92(1), 011111 (2008).
    [CrossRef]
  19. H. Xiong, H. Xu, Y. Fu, Y. Cheng, Z. Xu, and S. L. Chin, “Spectral evolution of angularly resolved third-order harmonic generation by infrared femtosecond laser-pulse filamentation in air,” Phys. Rev. A77(4), 043802 (2008).
    [CrossRef]
  20. C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010).
    [CrossRef]
  21. H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun.56(1), 67–72 (1985).
    [CrossRef]
  22. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express17(16), 13429–13434 (2009).
    [CrossRef] [PubMed]
  23. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components: erratum,” Opt. Express18(3), 3011–3012 (2010).
    [CrossRef]
  24. T. S. William, Laser Fundamentals (2nd edition, Cambridge University Press, 2004).
  25. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
    [CrossRef]
  26. J. Bernhardt, W. Liu, S. L. Chin, and R. Sauerbrey, “Pressure independence of intensity clamping during filamentation: theory and experiment,” Appl. Phys. B91(1), 45–48 (2008).
    [CrossRef]
  27. A. Becker, A. D. Bandrauk, and S. L. Chin, “S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule,” Chem. Phys. Lett.343(3-4), 345–350 (2001).
    [CrossRef]
  28. R. W. Boyd, Nonlinear Optics (3rd edtion, Academic Press, 2008).
  29. F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, “Third harmonic beam profile generated in atmospheric air using femtosecond laser pulses,” Opt. Commun.245(1-6), 399–405 (2005).
    [CrossRef]

2012 (3)

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys.111(3), 033105 (2012).
[CrossRef]

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

G. O. Ariunbold, P. Polynkin, and J. V. Moloney, “Third and fifth harmonic generation by tightly focused femtosecond pulses at 2.2 μm wavelength in air,” Opt. Express20(2), 1662–1667 (2012).
[CrossRef] [PubMed]

2011 (6)

J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
[CrossRef]

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett.98(21), 211102 (2011).
[CrossRef]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
[CrossRef] [PubMed]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
[CrossRef]

M. N. Shneider, A. Baltuška, and A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys.110(8), 083112 (2011).
[CrossRef]

2010 (2)

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010).
[CrossRef]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components: erratum,” Opt. Express18(3), 3011–3012 (2010).
[CrossRef]

2009 (1)

2008 (3)

J. Bernhardt, W. Liu, S. L. Chin, and R. Sauerbrey, “Pressure independence of intensity clamping during filamentation: theory and experiment,” Appl. Phys. B91(1), 45–48 (2008).
[CrossRef]

H. Xu, H. Xiong, R. Li, Y. Cheng, Z. Xu, and S. L. Chin, “X-shaped third harmonic generated by ultrashort infrared pulse filamentation in air,” Appl. Phys. Lett.92(1), 011111 (2008).
[CrossRef]

H. Xiong, H. Xu, Y. Fu, Y. Cheng, Z. Xu, and S. L. Chin, “Spectral evolution of angularly resolved third-order harmonic generation by infrared femtosecond laser-pulse filamentation in air,” Phys. Rev. A77(4), 043802 (2008).
[CrossRef]

2007 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

2005 (2)

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, “Third harmonic beam profile generated in atmospheric air using femtosecond laser pulses,” Opt. Commun.245(1-6), 399–405 (2005).
[CrossRef]

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

2004 (1)

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

2003 (1)

Q. Luo, W. Liu, and S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B76(3), 337–340 (2003).
[CrossRef]

2001 (1)

A. Becker, A. D. Bandrauk, and S. L. Chin, “S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule,” Chem. Phys. Lett.343(3-4), 345–350 (2001).
[CrossRef]

1998 (1)

1997 (1)

1985 (1)

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun.56(1), 67–72 (1985).
[CrossRef]

1963 (2)

L. E. S. Mathias and J. T. Parker, “Stimulated emission in the band spectrum of nitrogen,” Appl. Phys. Lett.3(1), 16–18 (1963).
[CrossRef]

H. G. Heard, “Ultra-violet gas laser at room temperature,” Nature200(4907), 667 (1963).
[CrossRef]

Aközbek, N.

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, “Third harmonic beam profile generated in atmospheric air using femtosecond laser pulses,” Opt. Commun.245(1-6), 399–405 (2005).
[CrossRef]

Ariunbold, G. O.

Baltuška, A.

M. N. Shneider, A. Baltuška, and A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys.110(8), 083112 (2011).
[CrossRef]

Bandrauk, A. D.

A. Becker, A. D. Bandrauk, and S. L. Chin, “S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule,” Chem. Phys. Lett.343(3-4), 345–350 (2001).
[CrossRef]

Becker, A.

A. Becker, A. D. Bandrauk, and S. L. Chin, “S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule,” Chem. Phys. Lett.343(3-4), 345–350 (2001).
[CrossRef]

Bernhardt, J.

J. Bernhardt, W. Liu, S. L. Chin, and R. Sauerbrey, “Pressure independence of intensity clamping during filamentation: theory and experiment,” Appl. Phys. B91(1), 45–48 (2008).
[CrossRef]

Bourayou, R.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Brée, C.

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010).
[CrossRef]

Brodeur, A.

Cameron, S.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Cheng, Y.

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
[CrossRef]

J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
[CrossRef]

H. Xu, H. Xiong, R. Li, Y. Cheng, Z. Xu, and S. L. Chin, “X-shaped third harmonic generated by ultrashort infrared pulse filamentation in air,” Appl. Phys. Lett.92(1), 011111 (2008).
[CrossRef]

H. Xiong, H. Xu, Y. Fu, Y. Cheng, Z. Xu, and S. L. Chin, “Spectral evolution of angularly resolved third-order harmonic generation by infrared femtosecond laser-pulse filamentation in air,” Phys. Rev. A77(4), 043802 (2008).
[CrossRef]

Chien, C. Y.

Chin, S. L.

J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
[CrossRef]

H. Xu, H. Xiong, R. Li, Y. Cheng, Z. Xu, and S. L. Chin, “X-shaped third harmonic generated by ultrashort infrared pulse filamentation in air,” Appl. Phys. Lett.92(1), 011111 (2008).
[CrossRef]

H. Xiong, H. Xu, Y. Fu, Y. Cheng, Z. Xu, and S. L. Chin, “Spectral evolution of angularly resolved third-order harmonic generation by infrared femtosecond laser-pulse filamentation in air,” Phys. Rev. A77(4), 043802 (2008).
[CrossRef]

J. Bernhardt, W. Liu, S. L. Chin, and R. Sauerbrey, “Pressure independence of intensity clamping during filamentation: theory and experiment,” Appl. Phys. B91(1), 45–48 (2008).
[CrossRef]

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, “Third harmonic beam profile generated in atmospheric air using femtosecond laser pulses,” Opt. Commun.245(1-6), 399–405 (2005).
[CrossRef]

Q. Luo, W. Liu, and S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B76(3), 337–340 (2003).
[CrossRef]

A. Becker, A. D. Bandrauk, and S. L. Chin, “S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule,” Chem. Phys. Lett.343(3-4), 345–350 (2001).
[CrossRef]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett.22(5), 304–306 (1997).
[CrossRef] [PubMed]

Chiron, A.

Chu, W.

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
[CrossRef]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

Demircan, A.

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010).
[CrossRef]

Dogariu, A.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Eislöffel, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Faucher, O.

Fernsler, R.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys.111(3), 033105 (2012).
[CrossRef]

Franco, M. A.

Fu, Y.

H. Xiong, H. Xu, Y. Fu, Y. Cheng, Z. Xu, and S. L. Chin, “Spectral evolution of angularly resolved third-order harmonic generation by infrared femtosecond laser-pulse filamentation in air,” Phys. Rev. A77(4), 043802 (2008).
[CrossRef]

Gordon, D.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys.111(3), 033105 (2012).
[CrossRef]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett.98(21), 211102 (2011).
[CrossRef]

Gravel, J.-F.

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, “Third harmonic beam profile generated in atmospheric air using femtosecond laser pulses,” Opt. Commun.245(1-6), 399–405 (2005).
[CrossRef]

Grillon, G.

Hafizi, B.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys.111(3), 033105 (2012).
[CrossRef]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett.98(21), 211102 (2011).
[CrossRef]

Hatzes, A. P.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

He, F.

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

Heard, H. G.

H. G. Heard, “Ultra-violet gas laser at room temperature,” Nature200(4907), 667 (1963).
[CrossRef]

Hemmer, P. R.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Hertz, E.

Ilkov, F. A.

Jing, C.

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
[CrossRef]

Kandidov, V. P.

Kasparian, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Kocharovsky, V.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Kosareva, O. G.

Lamouroux, B.

Lange, H. R.

Laux, U.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Lavorel, B.

Lehmann, K.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Lehmeier, H. J.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun.56(1), 67–72 (1985).
[CrossRef]

Leupacher, W.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun.56(1), 67–72 (1985).
[CrossRef]

Li, G.

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
[CrossRef]

Li, R.

H. Xu, H. Xiong, R. Li, Y. Cheng, Z. Xu, and S. L. Chin, “X-shaped third harmonic generated by ultrashort infrared pulse filamentation in air,” Appl. Phys. Lett.92(1), 011111 (2008).
[CrossRef]

Liu, W.

J. Bernhardt, W. Liu, S. L. Chin, and R. Sauerbrey, “Pressure independence of intensity clamping during filamentation: theory and experiment,” Appl. Phys. B91(1), 45–48 (2008).
[CrossRef]

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, “Third harmonic beam profile generated in atmospheric air using femtosecond laser pulses,” Opt. Commun.245(1-6), 399–405 (2005).
[CrossRef]

Q. Luo, W. Liu, and S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B76(3), 337–340 (2003).
[CrossRef]

Loriot, V.

Lucht, R.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Luo, Q.

Q. Luo, W. Liu, and S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B76(3), 337–340 (2003).
[CrossRef]

Mathias, L. E. S.

L. E. S. Mathias and J. T. Parker, “Stimulated emission in the band spectrum of nitrogen,” Appl. Phys. Lett.3(1), 16–18 (1963).
[CrossRef]

Méjean, G.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Michael, J. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Miles, R.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Miles, R. B.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Moloney, J. V.

Mysyrowicz, A.

Ni, J.

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
[CrossRef]

Nibbering, E. T. J.

Parker, J. T.

L. E. S. Mathias and J. T. Parker, “Stimulated emission in the band spectrum of nitrogen,” Appl. Phys. Lett.3(1), 16–18 (1963).
[CrossRef]

Peñano, J.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys.111(3), 033105 (2012).
[CrossRef]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett.98(21), 211102 (2011).
[CrossRef]

Penzkofer, A.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun.56(1), 67–72 (1985).
[CrossRef]

Polynkin, P.

G. O. Ariunbold, P. Polynkin, and J. V. Moloney, “Third and fifth harmonic generation by tightly focused femtosecond pulses at 2.2 μm wavelength in air,” Opt. Express20(2), 1662–1667 (2012).
[CrossRef] [PubMed]

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Prade, B. S.

Ripoche, J.-F.

Rodriguez, M.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Rostovtsev, Y.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Salmon, E.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Sauerbrey, R.

J. Bernhardt, W. Liu, S. L. Chin, and R. Sauerbrey, “Pressure independence of intensity clamping during filamentation: theory and experiment,” Appl. Phys. B91(1), 45–48 (2008).
[CrossRef]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Scholz, A.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Scully, M.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys.111(3), 033105 (2012).
[CrossRef]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett.98(21), 211102 (2011).
[CrossRef]

Scully, M. O.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
[CrossRef] [PubMed]

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Shneider, M. N.

M. N. Shneider, A. Baltuška, and A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys.110(8), 083112 (2011).
[CrossRef]

Siebert, T.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Sokolov, A. V.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Sprangle, P.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys.111(3), 033105 (2012).
[CrossRef]

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett.98(21), 211102 (2011).
[CrossRef]

Stecklum, B.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Steinmeyer, G.

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010).
[CrossRef]

Théberge, F.

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, “Third harmonic beam profile generated in atmospheric air using femtosecond laser pulses,” Opt. Commun.245(1-6), 399–405 (2005).
[CrossRef]

Warren, W.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Welch, G. R.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Wolf, J.-P.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Wöste, L.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Xiong, H.

H. Xu, H. Xiong, R. Li, Y. Cheng, Z. Xu, and S. L. Chin, “X-shaped third harmonic generated by ultrashort infrared pulse filamentation in air,” Appl. Phys. Lett.92(1), 011111 (2008).
[CrossRef]

H. Xiong, H. Xu, Y. Fu, Y. Cheng, Z. Xu, and S. L. Chin, “Spectral evolution of angularly resolved third-order harmonic generation by infrared femtosecond laser-pulse filamentation in air,” Phys. Rev. A77(4), 043802 (2008).
[CrossRef]

Xu, H.

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
[CrossRef]

H. Xiong, H. Xu, Y. Fu, Y. Cheng, Z. Xu, and S. L. Chin, “Spectral evolution of angularly resolved third-order harmonic generation by infrared femtosecond laser-pulse filamentation in air,” Phys. Rev. A77(4), 043802 (2008).
[CrossRef]

H. Xu, H. Xiong, R. Li, Y. Cheng, Z. Xu, and S. L. Chin, “X-shaped third harmonic generated by ultrashort infrared pulse filamentation in air,” Appl. Phys. Lett.92(1), 011111 (2008).
[CrossRef]

Xu, Z.

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
[CrossRef]

J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
[CrossRef]

H. Xu, H. Xiong, R. Li, Y. Cheng, Z. Xu, and S. L. Chin, “X-shaped third harmonic generated by ultrashort infrared pulse filamentation in air,” Appl. Phys. Lett.92(1), 011111 (2008).
[CrossRef]

H. Xiong, H. Xu, Y. Fu, Y. Cheng, Z. Xu, and S. L. Chin, “Spectral evolution of angularly resolved third-order harmonic generation by infrared femtosecond laser-pulse filamentation in air,” Phys. Rev. A77(4), 043802 (2008).
[CrossRef]

Yao, J.

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
[CrossRef]

Yu, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Zeng, B.

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
[CrossRef]

Zhang, H.

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
[CrossRef]

Zheltikov, A. M.

M. N. Shneider, A. Baltuška, and A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys.110(8), 083112 (2011).
[CrossRef]

Appl. Phys. B (2)

Q. Luo, W. Liu, and S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B76(3), 337–340 (2003).
[CrossRef]

J. Bernhardt, W. Liu, S. L. Chin, and R. Sauerbrey, “Pressure independence of intensity clamping during filamentation: theory and experiment,” Appl. Phys. B91(1), 45–48 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

L. E. S. Mathias and J. T. Parker, “Stimulated emission in the band spectrum of nitrogen,” Appl. Phys. Lett.3(1), 16–18 (1963).
[CrossRef]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett.98(21), 211102 (2011).
[CrossRef]

H. Xu, H. Xiong, R. Li, Y. Cheng, Z. Xu, and S. L. Chin, “X-shaped third harmonic generated by ultrashort infrared pulse filamentation in air,” Appl. Phys. Lett.92(1), 011111 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

A. Becker, A. D. Bandrauk, and S. L. Chin, “S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule,” Chem. Phys. Lett.343(3-4), 345–350 (2001).
[CrossRef]

Europhys. Lett. (1)

W. Chu, B. Zeng, J. Yao, H. Xu, J. Ni, G. Li, H. Zhang, F. He, C. Jing, Y. Cheng, and Z. Xu, “Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses,” Europhys. Lett.97(6), 64004 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010).
[CrossRef]

J. Appl. Phys. (2)

M. N. Shneider, A. Baltuška, and A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys.110(8), 083112 (2011).
[CrossRef]

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys.111(3), 033105 (2012).
[CrossRef]

Nature (1)

H. G. Heard, “Ultra-violet gas laser at room temperature,” Nature200(4907), 667 (1963).
[CrossRef]

Opt. Commun. (2)

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun.56(1), 67–72 (1985).
[CrossRef]

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, “Third harmonic beam profile generated in atmospheric air using femtosecond laser pulses,” Opt. Commun.245(1-6), 399–405 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

Phys. Rev. A (3)

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A84(5), 051802 (2011).
[CrossRef]

H. Xiong, H. Xu, Y. Fu, Y. Cheng, Z. Xu, and S. L. Chin, “Spectral evolution of angularly resolved third-order harmonic generation by infrared femtosecond laser-pulse filamentation in air,” Phys. Rev. A77(4), 043802 (2008).
[CrossRef]

J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing, S. L. Chin, Y. Cheng, and Z. Xu, “Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses,” Phys. Rev. A84(6), 063846 (2011).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 036607 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Science (1)

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Other (3)

D. Kartashov, S. Ališauskas, A. Pugzlys, A. Baltuška, M. Shneider, and A. Zheltikov, “Free-space nitrogen laser from a mid-infrared filament,” in Research in Optical Sciences, OSA Technical Digest (Optical Society of America), paper HW3C.2 (2012), http://www.opticsinfobase.org/abstract.cfm?URI=HILAS-2012-HW3C.2 .

R. W. Boyd, Nonlinear Optics (3rd edtion, Academic Press, 2008).

T. S. William, Laser Fundamentals (2nd edition, Cambridge University Press, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

Measured spectra of the 3rd harmonic (a, b, c) and pure 391 nm lasing signals (d, e, f) in the forward direction in N2-Xe mixture (a, d), an N2-Ar mixture (b, e) and N2-Ne mixture (c, f) using pump wavelength at 1184 nm. The pressure of nitrogen is fixed at 0.1bar. Comparison of the 391 nm peak intensity in N2-Ar gas mixture and N2-Ne gas mixture is shown in (g).

Fig. 3
Fig. 3

Measured spectra of the 3rd harmonic (a) and pure 391 nm lasing signals (b) in the forward direction in N2-Ar mixture using pump wavelength at 1258 nm. The pressure of nitrogen is fixed at 0.1bar. The 391 nm peak intensity as a function of argon pressure is depicted in (c). Inset in (b): Polarization property of the 391 nm laser.

Fig. 4
Fig. 4

(a) Experimentally measured fluorescence intensities at 391 nm in the three gas mixtures. The pressure of nitrogen is fixed at 0.1bar. (b) Images of femtosecond filaments in the three gas mixtures and pure nitrogen. (c) Normalized plasma luminescence intensity distribution inside the filaments in (b) along the direction of laser propagation. (d) Normalized plasma luminescence intensity inside the filaments in (b) in lateral direction. (e) Forward 3rd harmonic spectra in pure nitrogen (100mbar), N2-Xe gas mixture (100:200mbar), N2-Ar gas mixture (100:200mbar) and N2-Ne gas mixture (100:200mbar). (f) Comparison of the 391 nm lasing intensity and its seed intensity in N2-Ar gas mixture and N2-Ne gas mixture.

Fig. 5
Fig. 5

(a) Multi-wavelengths remote laser at 357 nm and 391 nm in pure nitrogen. (b) Multi-wavelengths remote laser at 420 nm, 424 nm, and 428 nm in pure nitrogen.

Tables (1)

Tables Icon

Table 1 Ionization potentials and second-order Kerr refractive index coefficients (800 nm at 1 atm) of Xe, N2, Ar, and Ne.

Metrics