Abstract

Empirically-based satellite estimates of chlorophyll a [Chl] (e.g. OC3) are an important indicator of phytoplankton biomass. To correctly interpret [Chl] variability, estimates must be accurate and sources of algorithm errors known. While the underlying assumptions of band ratio algorithms such as OC3 have been tacitly hypothesized (i.e. CDOM and phytoplankton absorption covary), the influence of component absorption and scattering on the shape of the algorithm and estimated [Chl] error has yet to be explicitly revealed. We utilized the NOMAD bio-optical data set to examine variations between satellite estimated [Chl] and in situ values. We partitioned the variability into (a) signal contamination and (b) natural phytoplankton variability (variability in chlorophyll-specific phytoplankton absorption). Not surprisingly, the OC3 best-fit curve resulted from a balance between these two different sources of variation confirming the bias by detrital absorption on global scale. Unlike previous descriptions of empirical [Chl] algorithms, our study (a) quantified the mean detrital:phytoplankton absorption as ~1:1in the global NOMAD data set, and (b) removed detrital (CDOM + non-algal particle) absorption in radiative transfer models directly showing that the scale of the remaining variability in the band ratio algorithm was dominated by phytoplankton absorption cross section.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Yoder, “An overview of temporal and spatial patterns in satellite-derived chlorophyll-a imagery and their relation to ocean processes,” in: Satellites, Oceanography and Society D. Halpern, ed. (Elsevier Oceanography Series, 2000), pp. 225–234.
  2. W. W. Gregg, N. W. Casey, and C. R. McClain, “Recent trends in global ocean chlorophyll,” Geophys. Res. Lett.32(3), L03606 (2005).
    [CrossRef]
  3. J. H. Ryther and D. W. Menzel, “Light adaptation by marine phytoplankton,” Limnol. Oceanogr.4(4), 492–497 (1959).
    [CrossRef]
  4. P. G. Falkowski and T. G. Owens, “Light-shade adaptation: two strategies in marine phytoplankton,” Plant Physiol.66(4), 592–595 (1980).
    [CrossRef] [PubMed]
  5. M. J. Perry, M. C. Talbot, and R. S. Alberte, “Photoadaptation in marine phytoplankton: response of the photosynthetic unit,” Mar. Biol.62(2-3), 91–101 (1981).
    [CrossRef]
  6. L. N. M. Duyens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim. Biophys. Acta19(1), 1–12 (1956).
    [CrossRef] [PubMed]
  7. J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. I. general treatment of suspensions of pigmented cells,” New Phytol.75(1), 11–20 (1975).
    [CrossRef]
  8. G. B. Mitchell and D. A. Kiefer, “Variability in pigment particulate fluorescence and absorption spectra in the northeastern Pacific Ocean,” Deep-Sea Res.35(5), 665–689 (1988) (Part A).
    [CrossRef]
  9. N. P. Hoepffner and S. Sathyendrenath, “Bio-optical characteristics of coastal waters: Absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr.37(8), 1660–1679 (1992).
    [CrossRef]
  10. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res.100(C7), 13321–13332 (1995).
    [CrossRef]
  11. D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett.32(20), L20605 (2005).
    [CrossRef]
  12. D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res.110(C7), C07011 (2005).
    [CrossRef]
  13. A. Morel and B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote Sens. Environ.113(5), 998–1011 (2009).
    [CrossRef]
  14. H. Loisel, B. Lubac, D. Dessailly, L. Duforet-Gaurier, and V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express18(20), 20949–20959 (2010).
    [CrossRef]
  15. M. Szeto, P. J. Werdell, T. S. Moore, and J. W. Campbell, “Are the world’s oceans optically different?” J. Geophys. Res.116, C00H04 (2011).
    [CrossRef]
  16. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semiananalytic radiance model of ocean colour,” J. Geophys. Res.93, 10,909–10,924 (1988).
  17. A. Morel, “Optical modeling of upper ocean in relation to its biogenous matter content (Case 1 waters),” J. Geophys. Res.93(C9), 10,749–10,768 (1988).
    [CrossRef]
  18. O. Ulloa, S. Sathyendranath, and T. Platt, “Effect of the particle-size distribution on the backscattering ratio in seawater,” Appl. Opt.33(30), 7070–7077 (1994).
    [CrossRef] [PubMed]
  19. IOCCG, “Remote sensing of ocean color in coastal, and other optically-complex waters,” in Reports of the International Ocean-Colour Coordinating Group, No. 3 Sathyendranath, S. (ed.), (IOCCG, 2000), p. 140.
  20. H. R. Gordon and A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery: a review,” Lecture Notes on Coastal and Estuarine Studies, Volume 4 (Springer-Verlag, 1983).
  21. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
    [CrossRef]
  22. C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, and H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential application to algorithm development,” Remote Sens. Environ.112(12), 4186–4203 (2008).
    [CrossRef]
  23. S. B. Hooker, C. R. McClain, J. K. Firestone, T. L. Westphal, E. N. Yeh, and Y. Geo, “The SeaWiFS Bio-optical Archive and Storage System (SeaBASS), part 1.,” NASA Tech. Memo., 104566, Vol. 20, (Greenbelt: NASA Goddard Space Flight Center, 1994), p. 37.
  24. NASA, “SEABASS”, http://seabass.gsfc.nasa.gov/
  25. S. C. Alvain, C. Moulin, Y. Dandonneau, and F. M. Bréon, “Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery,” Deep-Sea Res.92, 14411–14415 (2005).
  26. S. C. Alvain, C. Moulin, Y. Dandonneau, H. Loisel, and F. M. Breon, “A species dependent bio-optical model of case I waters for global ocean color processing,” Deep Sea Res. Part I Oceanogr. Res. Pap.53(5), 917–925 (2006).
    [CrossRef]
  27. . Alvain, C. Moulin, Y. Dandonneau, and H. Loisel, “Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view,” Global Biogeochem. Cycles22(3), GB3001 (2008), doi:.
    [CrossRef]
  28. R. A. Barnes, D. K. Clark, W. E. Esaias, G. S. Fargion, G. C. Feldman, and C. R. Mcclain, “Development of a consistent multi-sensor global ocean colour time series,” Int. J. Remote Sens.24(20), 4047–4064 (2003).
    [CrossRef]
  29. G. S. Fargion and C. R. McClain, SIMBIOS project 2003 annual report, NASA Tech. Memo., 2003–212251, (Greenbelt: NASA Goddard Space Flight Center, 2003), 202.
  30. C. R. McClain, W. Esaias, G. Feldman, R. Frouin, W. Gregg, and S. B. Hooker, “The proposal for the NASA Sensor Intercalibration and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Program, NASA Tech. Memo. 2002-210008, (Greenbelt: NASA Goddard Space Flight Center, 2002), 65.
  31. P. J. Werdell, “An evaluation of inherent optical property data for inclusion in the NASA bio-Optical Marine Algorithm Data set,” NASA Ocean Biology Processing Group, Science Systems and Applications, Inc. Document Version 1.1, corresponding to NOMAD Version 1.3, (2005).
  32. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ.98(1), 122–140 (2005).
    [CrossRef]
  33. S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. time series from the Sargasso Sea.” J. of Geophys. Res.- Oceans102(C8), 18607–18625 (1997).
    [CrossRef]
  34. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt.41(15), 2705–2714 (2002).
    [CrossRef] [PubMed]
  35. K. Baith, R. Lindsey, G. Fu, and C. R. McClain, “SeaDAS: a data analysis system for ocean color satellite sensors,” in EOS, Trans. Am. Geophys. Union, (2000).
  36. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt.36(33), 8710–8723 (1997).
    [CrossRef] [PubMed]
  37. A. Morel, “Optical properties of pure seawater,” In: Optical Aspects of Oceanography N. G. Jerlov and E. Steemann Nielsen, eds. (Academic Press Inc., 1974), pp. 1–24.
  38. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt.14(2), 417–427 (1975).
    [CrossRef] [PubMed]
  39. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt.38(18), 3831–3843 (1999).
    [CrossRef] [PubMed]
  40. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “ Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, ” J. Geophys. Res.103(C13), 31033–31044 (1998).
    [CrossRef]
  41. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr.43(5), 847–858 (1998).
    [CrossRef]
  42. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt.41(30), 6289–6306 (2002).
    [CrossRef] [PubMed]
  43. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr.29(2), 350–356 (1984).
    [CrossRef]
  44. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998).
    [CrossRef]
  45. P. Legendre and L. Legendre, Numerical Ecology, 2nd English ed. (Elsevier Science BV, 1998), p. 853.
  46. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr.48(2), 843–859 (2003).
    [CrossRef]
  47. G. E. Fogg and G. T. Boalch, “Extracellular products in pure cultures of a brown alga,” Nature181(4611), 789–790 (1958).
    [CrossRef]
  48. C. S. Yentsch and C. A. Reichert, “The interrelationship between water soluble yellow substances and chloroplastic pigments in marine algae,” Bot. Mar.3, 65–74 (1961).
  49. H. Sasaki, T. Miyamura, S. Saitoh, and J. Ishizaka, “Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan,” Estuar. Coast. Shelf Sci.64(2-3), 447–458 (2005).
    [CrossRef]

2011

M. Szeto, P. J. Werdell, T. S. Moore, and J. W. Campbell, “Are the world’s oceans optically different?” J. Geophys. Res.116, C00H04 (2011).
[CrossRef]

2010

2009

A. Morel and B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote Sens. Environ.113(5), 998–1011 (2009).
[CrossRef]

2008

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, and H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential application to algorithm development,” Remote Sens. Environ.112(12), 4186–4203 (2008).
[CrossRef]

. Alvain, C. Moulin, Y. Dandonneau, and H. Loisel, “Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view,” Global Biogeochem. Cycles22(3), GB3001 (2008), doi:.
[CrossRef]

2006

S. C. Alvain, C. Moulin, Y. Dandonneau, H. Loisel, and F. M. Breon, “A species dependent bio-optical model of case I waters for global ocean color processing,” Deep Sea Res. Part I Oceanogr. Res. Pap.53(5), 917–925 (2006).
[CrossRef]

2005

S. C. Alvain, C. Moulin, Y. Dandonneau, and F. M. Bréon, “Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery,” Deep-Sea Res.92, 14411–14415 (2005).

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett.32(20), L20605 (2005).
[CrossRef]

D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res.110(C7), C07011 (2005).
[CrossRef]

W. W. Gregg, N. W. Casey, and C. R. McClain, “Recent trends in global ocean chlorophyll,” Geophys. Res. Lett.32(3), L03606 (2005).
[CrossRef]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ.98(1), 122–140 (2005).
[CrossRef]

H. Sasaki, T. Miyamura, S. Saitoh, and J. Ishizaka, “Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan,” Estuar. Coast. Shelf Sci.64(2-3), 447–458 (2005).
[CrossRef]

2003

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr.48(2), 843–859 (2003).
[CrossRef]

R. A. Barnes, D. K. Clark, W. E. Esaias, G. S. Fargion, G. C. Feldman, and C. R. Mcclain, “Development of a consistent multi-sensor global ocean colour time series,” Int. J. Remote Sens.24(20), 4047–4064 (2003).
[CrossRef]

2002

1999

1998

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “ Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, ” J. Geophys. Res.103(C13), 31033–31044 (1998).
[CrossRef]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr.43(5), 847–858 (1998).
[CrossRef]

1997

S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. time series from the Sargasso Sea.” J. of Geophys. Res.- Oceans102(C8), 18607–18625 (1997).
[CrossRef]

R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt.36(33), 8710–8723 (1997).
[CrossRef] [PubMed]

1995

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res.100(C7), 13321–13332 (1995).
[CrossRef]

1994

1992

N. P. Hoepffner and S. Sathyendrenath, “Bio-optical characteristics of coastal waters: Absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr.37(8), 1660–1679 (1992).
[CrossRef]

1988

G. B. Mitchell and D. A. Kiefer, “Variability in pigment particulate fluorescence and absorption spectra in the northeastern Pacific Ocean,” Deep-Sea Res.35(5), 665–689 (1988) (Part A).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semiananalytic radiance model of ocean colour,” J. Geophys. Res.93, 10,909–10,924 (1988).

A. Morel, “Optical modeling of upper ocean in relation to its biogenous matter content (Case 1 waters),” J. Geophys. Res.93(C9), 10,749–10,768 (1988).
[CrossRef]

1984

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr.29(2), 350–356 (1984).
[CrossRef]

1981

M. J. Perry, M. C. Talbot, and R. S. Alberte, “Photoadaptation in marine phytoplankton: response of the photosynthetic unit,” Mar. Biol.62(2-3), 91–101 (1981).
[CrossRef]

1980

P. G. Falkowski and T. G. Owens, “Light-shade adaptation: two strategies in marine phytoplankton,” Plant Physiol.66(4), 592–595 (1980).
[CrossRef] [PubMed]

1977

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
[CrossRef]

1975

J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. I. general treatment of suspensions of pigmented cells,” New Phytol.75(1), 11–20 (1975).
[CrossRef]

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt.14(2), 417–427 (1975).
[CrossRef] [PubMed]

1961

C. S. Yentsch and C. A. Reichert, “The interrelationship between water soluble yellow substances and chloroplastic pigments in marine algae,” Bot. Mar.3, 65–74 (1961).

1959

J. H. Ryther and D. W. Menzel, “Light adaptation by marine phytoplankton,” Limnol. Oceanogr.4(4), 492–497 (1959).
[CrossRef]

1958

G. E. Fogg and G. T. Boalch, “Extracellular products in pure cultures of a brown alga,” Nature181(4611), 789–790 (1958).
[CrossRef]

1956

L. N. M. Duyens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim. Biophys. Acta19(1), 1–12 (1956).
[CrossRef] [PubMed]

Alberte, R. S.

M. J. Perry, M. C. Talbot, and R. S. Alberte, “Photoadaptation in marine phytoplankton: response of the photosynthetic unit,” Mar. Biol.62(2-3), 91–101 (1981).
[CrossRef]

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “ Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, ” J. Geophys. Res.103(C13), 31033–31044 (1998).
[CrossRef]

Alvain, .

. Alvain, C. Moulin, Y. Dandonneau, and H. Loisel, “Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view,” Global Biogeochem. Cycles22(3), GB3001 (2008), doi:.
[CrossRef]

Alvain, S. C.

S. C. Alvain, C. Moulin, Y. Dandonneau, H. Loisel, and F. M. Breon, “A species dependent bio-optical model of case I waters for global ocean color processing,” Deep Sea Res. Part I Oceanogr. Res. Pap.53(5), 917–925 (2006).
[CrossRef]

S. C. Alvain, C. Moulin, Y. Dandonneau, and F. M. Bréon, “Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery,” Deep-Sea Res.92, 14411–14415 (2005).

Antoine, D.

Babin, M.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr.48(2), 843–859 (2003).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “ Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, ” J. Geophys. Res.103(C13), 31033–31044 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res.100(C7), 13321–13332 (1995).
[CrossRef]

Bailey, S. W.

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ.98(1), 122–140 (2005).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semiananalytic radiance model of ocean colour,” J. Geophys. Res.93, 10,909–10,924 (1988).

Barnes, R. A.

R. A. Barnes, D. K. Clark, W. E. Esaias, G. S. Fargion, G. C. Feldman, and C. R. Mcclain, “Development of a consistent multi-sensor global ocean colour time series,” Int. J. Remote Sens.24(20), 4047–4064 (2003).
[CrossRef]

Behrenfeld, M. J.

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett.32(20), L20605 (2005).
[CrossRef]

D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res.110(C7), C07011 (2005).
[CrossRef]

Boalch, G. T.

G. E. Fogg and G. T. Boalch, “Extracellular products in pure cultures of a brown alga,” Nature181(4611), 789–790 (1958).
[CrossRef]

Breon, F. M.

S. C. Alvain, C. Moulin, Y. Dandonneau, H. Loisel, and F. M. Breon, “A species dependent bio-optical model of case I waters for global ocean color processing,” Deep Sea Res. Part I Oceanogr. Res. Pap.53(5), 917–925 (2006).
[CrossRef]

Bréon, F. M.

S. C. Alvain, C. Moulin, Y. Dandonneau, and F. M. Bréon, “Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery,” Deep-Sea Res.92, 14411–14415 (2005).

Bricaud, A.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “ Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, ” J. Geophys. Res.103(C13), 31033–31044 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res.100(C7), 13321–13332 (1995).
[CrossRef]

Brown, C. A.

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, and H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential application to algorithm development,” Remote Sens. Environ.112(12), 4186–4203 (2008).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semiananalytic radiance model of ocean colour,” J. Geophys. Res.93, 10,909–10,924 (1988).

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semiananalytic radiance model of ocean colour,” J. Geophys. Res.93, 10,909–10,924 (1988).

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt.14(2), 417–427 (1975).
[CrossRef] [PubMed]

Campbell, J. W.

M. Szeto, P. J. Werdell, T. S. Moore, and J. W. Campbell, “Are the world’s oceans optically different?” J. Geophys. Res.116, C00H04 (2011).
[CrossRef]

Carder, K. L.

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt.38(18), 3831–3843 (1999).
[CrossRef] [PubMed]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998).
[CrossRef]

Casey, N. W.

W. W. Gregg, N. W. Casey, and C. R. McClain, “Recent trends in global ocean chlorophyll,” Geophys. Res. Lett.32(3), L03606 (2005).
[CrossRef]

Clark, D. K.

R. A. Barnes, D. K. Clark, W. E. Esaias, G. S. Fargion, G. C. Feldman, and C. R. Mcclain, “Development of a consistent multi-sensor global ocean colour time series,” Int. J. Remote Sens.24(20), 4047–4064 (2003).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semiananalytic radiance model of ocean colour,” J. Geophys. Res.93, 10,909–10,924 (1988).

Claustre, H.

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, and H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential application to algorithm development,” Remote Sens. Environ.112(12), 4186–4203 (2008).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “ Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, ” J. Geophys. Res.103(C13), 31033–31044 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res.100(C7), 13321–13332 (1995).
[CrossRef]

Dandonneau, Y.

. Alvain, C. Moulin, Y. Dandonneau, and H. Loisel, “Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view,” Global Biogeochem. Cycles22(3), GB3001 (2008), doi:.
[CrossRef]

S. C. Alvain, C. Moulin, Y. Dandonneau, H. Loisel, and F. M. Breon, “A species dependent bio-optical model of case I waters for global ocean color processing,” Deep Sea Res. Part I Oceanogr. Res. Pap.53(5), 917–925 (2006).
[CrossRef]

S. C. Alvain, C. Moulin, Y. Dandonneau, and F. M. Bréon, “Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery,” Deep-Sea Res.92, 14411–14415 (2005).

Dessailly, D.

Duforet-Gaurier, L.

Duyens, L. N. M.

L. N. M. Duyens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim. Biophys. Acta19(1), 1–12 (1956).
[CrossRef] [PubMed]

Esaias, W. E.

R. A. Barnes, D. K. Clark, W. E. Esaias, G. S. Fargion, G. C. Feldman, and C. R. Mcclain, “Development of a consistent multi-sensor global ocean colour time series,” Int. J. Remote Sens.24(20), 4047–4064 (2003).
[CrossRef]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semiananalytic radiance model of ocean colour,” J. Geophys. Res.93, 10,909–10,924 (1988).

Falkowski, P. G.

P. G. Falkowski and T. G. Owens, “Light-shade adaptation: two strategies in marine phytoplankton,” Plant Physiol.66(4), 592–595 (1980).
[CrossRef] [PubMed]

Fargion, G. S.

R. A. Barnes, D. K. Clark, W. E. Esaias, G. S. Fargion, G. C. Feldman, and C. R. Mcclain, “Development of a consistent multi-sensor global ocean colour time series,” Int. J. Remote Sens.24(20), 4047–4064 (2003).
[CrossRef]

Feldman, G. C.

R. A. Barnes, D. K. Clark, W. E. Esaias, G. S. Fargion, G. C. Feldman, and C. R. Mcclain, “Development of a consistent multi-sensor global ocean colour time series,” Int. J. Remote Sens.24(20), 4047–4064 (2003).
[CrossRef]

Fell, F.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr.48(2), 843–859 (2003).
[CrossRef]

Fogg, G. E.

G. E. Fogg and G. T. Boalch, “Extracellular products in pure cultures of a brown alga,” Nature181(4611), 789–790 (1958).
[CrossRef]

Fournier-Sicre, V.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr.48(2), 843–859 (2003).
[CrossRef]

Fry, E. S.

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998).
[CrossRef]

S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. time series from the Sargasso Sea.” J. of Geophys. Res.- Oceans102(C8), 18607–18625 (1997).
[CrossRef]

Gentili, B.

A. Morel and B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote Sens. Environ.113(5), 998–1011 (2009).
[CrossRef]

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, and H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential application to algorithm development,” Remote Sens. Environ.112(12), 4186–4203 (2008).
[CrossRef]

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt.41(30), 6289–6306 (2002).
[CrossRef] [PubMed]

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semiananalytic radiance model of ocean colour,” J. Geophys. Res.93, 10,909–10,924 (1988).

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt.14(2), 417–427 (1975).
[CrossRef] [PubMed]

Gregg, W. W.

W. W. Gregg, N. W. Casey, and C. R. McClain, “Recent trends in global ocean chlorophyll,” Geophys. Res. Lett.32(3), L03606 (2005).
[CrossRef]

Hoepffner, N. P.

N. P. Hoepffner and S. Sathyendrenath, “Bio-optical characteristics of coastal waters: Absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr.37(8), 1660–1679 (1992).
[CrossRef]

Huot, Y.

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, and H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential application to algorithm development,” Remote Sens. Environ.112(12), 4186–4203 (2008).
[CrossRef]

Ishizaka, J.

H. Sasaki, T. Miyamura, S. Saitoh, and J. Ishizaka, “Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan,” Estuar. Coast. Shelf Sci.64(2-3), 447–458 (2005).
[CrossRef]

Jacobs, M. M.

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998).
[CrossRef]

Kiefer, D. A.

G. B. Mitchell and D. A. Kiefer, “Variability in pigment particulate fluorescence and absorption spectra in the northeastern Pacific Ocean,” Deep-Sea Res.35(5), 665–689 (1988) (Part A).
[CrossRef]

Kirk, J. T. O.

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr.29(2), 350–356 (1984).
[CrossRef]

J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. I. general treatment of suspensions of pigmented cells,” New Phytol.75(1), 11–20 (1975).
[CrossRef]

Lee, Z. P.

Loisel, H.

H. Loisel, B. Lubac, D. Dessailly, L. Duforet-Gaurier, and V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express18(20), 20949–20959 (2010).
[CrossRef]

. Alvain, C. Moulin, Y. Dandonneau, and H. Loisel, “Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view,” Global Biogeochem. Cycles22(3), GB3001 (2008), doi:.
[CrossRef]

S. C. Alvain, C. Moulin, Y. Dandonneau, H. Loisel, and F. M. Breon, “A species dependent bio-optical model of case I waters for global ocean color processing,” Deep Sea Res. Part I Oceanogr. Res. Pap.53(5), 917–925 (2006).
[CrossRef]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr.43(5), 847–858 (1998).
[CrossRef]

Lubac, B.

Maritorena, S.

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett.32(20), L20605 (2005).
[CrossRef]

D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res.110(C7), C07011 (2005).
[CrossRef]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt.41(15), 2705–2714 (2002).
[CrossRef] [PubMed]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998).
[CrossRef]

McClain, C. R.

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett.32(20), L20605 (2005).
[CrossRef]

W. W. Gregg, N. W. Casey, and C. R. McClain, “Recent trends in global ocean chlorophyll,” Geophys. Res. Lett.32(3), L03606 (2005).
[CrossRef]

R. A. Barnes, D. K. Clark, W. E. Esaias, G. S. Fargion, G. C. Feldman, and C. R. Mcclain, “Development of a consistent multi-sensor global ocean colour time series,” Int. J. Remote Sens.24(20), 4047–4064 (2003).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998).
[CrossRef]

Menzel, D. W.

J. H. Ryther and D. W. Menzel, “Light adaptation by marine phytoplankton,” Limnol. Oceanogr.4(4), 492–497 (1959).
[CrossRef]

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998).
[CrossRef]

Mitchell, G. B.

G. B. Mitchell and D. A. Kiefer, “Variability in pigment particulate fluorescence and absorption spectra in the northeastern Pacific Ocean,” Deep-Sea Res.35(5), 665–689 (1988) (Part A).
[CrossRef]

Miyamura, T.

H. Sasaki, T. Miyamura, S. Saitoh, and J. Ishizaka, “Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan,” Estuar. Coast. Shelf Sci.64(2-3), 447–458 (2005).
[CrossRef]

Mobley, C. D.

Moore, T. S.

M. Szeto, P. J. Werdell, T. S. Moore, and J. W. Campbell, “Are the world’s oceans optically different?” J. Geophys. Res.116, C00H04 (2011).
[CrossRef]

Morel, A.

A. Morel and B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote Sens. Environ.113(5), 998–1011 (2009).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr.48(2), 843–859 (2003).
[CrossRef]

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt.41(30), 6289–6306 (2002).
[CrossRef] [PubMed]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “ Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, ” J. Geophys. Res.103(C13), 31033–31044 (1998).
[CrossRef]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr.43(5), 847–858 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res.100(C7), 13321–13332 (1995).
[CrossRef]

A. Morel, “Optical modeling of upper ocean in relation to its biogenous matter content (Case 1 waters),” J. Geophys. Res.93(C9), 10,749–10,768 (1988).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
[CrossRef]

Moulin, C.

. Alvain, C. Moulin, Y. Dandonneau, and H. Loisel, “Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view,” Global Biogeochem. Cycles22(3), GB3001 (2008), doi:.
[CrossRef]

S. C. Alvain, C. Moulin, Y. Dandonneau, H. Loisel, and F. M. Breon, “A species dependent bio-optical model of case I waters for global ocean color processing,” Deep Sea Res. Part I Oceanogr. Res. Pap.53(5), 917–925 (2006).
[CrossRef]

S. C. Alvain, C. Moulin, Y. Dandonneau, and F. M. Bréon, “Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery,” Deep-Sea Res.92, 14411–14415 (2005).

Nelson, N. B.

D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res.110(C7), C07011 (2005).
[CrossRef]

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett.32(20), L20605 (2005).
[CrossRef]

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998).
[CrossRef]

Owens, T. G.

P. G. Falkowski and T. G. Owens, “Light-shade adaptation: two strategies in marine phytoplankton,” Plant Physiol.66(4), 592–595 (1980).
[CrossRef] [PubMed]

Patch, J. S.

Perry, M. J.

M. J. Perry, M. C. Talbot, and R. S. Alberte, “Photoadaptation in marine phytoplankton: response of the photosynthetic unit,” Mar. Biol.62(2-3), 91–101 (1981).
[CrossRef]

Peterson, A. R.

Platt, T.

Pope, R. M.

Prieur, L.

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
[CrossRef]

Reichert, C. A.

C. S. Yentsch and C. A. Reichert, “The interrelationship between water soluble yellow substances and chloroplastic pigments in marine algae,” Bot. Mar.3, 65–74 (1961).

Ryther, J. H.

J. H. Ryther and D. W. Menzel, “Light adaptation by marine phytoplankton,” Limnol. Oceanogr.4(4), 492–497 (1959).
[CrossRef]

Saitoh, S.

H. Sasaki, T. Miyamura, S. Saitoh, and J. Ishizaka, “Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan,” Estuar. Coast. Shelf Sci.64(2-3), 447–458 (2005).
[CrossRef]

Sasaki, H.

H. Sasaki, T. Miyamura, S. Saitoh, and J. Ishizaka, “Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan,” Estuar. Coast. Shelf Sci.64(2-3), 447–458 (2005).
[CrossRef]

Sathyendranath, S.

Sathyendrenath, S.

N. P. Hoepffner and S. Sathyendrenath, “Bio-optical characteristics of coastal waters: Absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr.37(8), 1660–1679 (1992).
[CrossRef]

Siegel, D. A.

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett.32(20), L20605 (2005).
[CrossRef]

D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res.110(C7), C07011 (2005).
[CrossRef]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt.41(15), 2705–2714 (2002).
[CrossRef] [PubMed]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998).
[CrossRef]

S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. time series from the Sargasso Sea.” J. of Geophys. Res.- Oceans102(C8), 18607–18625 (1997).
[CrossRef]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semiananalytic radiance model of ocean colour,” J. Geophys. Res.93, 10,909–10,924 (1988).

Steward, R. G.

Stramski, D.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr.48(2), 843–859 (2003).
[CrossRef]

Szeto, M.

M. Szeto, P. J. Werdell, T. S. Moore, and J. W. Campbell, “Are the world’s oceans optically different?” J. Geophys. Res.116, C00H04 (2011).
[CrossRef]

Talbot, M. C.

M. J. Perry, M. C. Talbot, and R. S. Alberte, “Photoadaptation in marine phytoplankton: response of the photosynthetic unit,” Mar. Biol.62(2-3), 91–101 (1981).
[CrossRef]

Ulloa, O.

Vantrepotte, V.

Werdell, P. J.

M. Szeto, P. J. Werdell, T. S. Moore, and J. W. Campbell, “Are the world’s oceans optically different?” J. Geophys. Res.116, C00H04 (2011).
[CrossRef]

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, and H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential application to algorithm development,” Remote Sens. Environ.112(12), 4186–4203 (2008).
[CrossRef]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ.98(1), 122–140 (2005).
[CrossRef]

Yentsch, C. S.

C. S. Yentsch and C. A. Reichert, “The interrelationship between water soluble yellow substances and chloroplastic pigments in marine algae,” Bot. Mar.3, 65–74 (1961).

Appl. Opt.

Biochim. Biophys. Acta

L. N. M. Duyens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim. Biophys. Acta19(1), 1–12 (1956).
[CrossRef] [PubMed]

Bot. Mar.

C. S. Yentsch and C. A. Reichert, “The interrelationship between water soluble yellow substances and chloroplastic pigments in marine algae,” Bot. Mar.3, 65–74 (1961).

Deep Sea Res. Part I Oceanogr. Res. Pap.

S. C. Alvain, C. Moulin, Y. Dandonneau, H. Loisel, and F. M. Breon, “A species dependent bio-optical model of case I waters for global ocean color processing,” Deep Sea Res. Part I Oceanogr. Res. Pap.53(5), 917–925 (2006).
[CrossRef]

Deep-Sea Res.

S. C. Alvain, C. Moulin, Y. Dandonneau, and F. M. Bréon, “Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery,” Deep-Sea Res.92, 14411–14415 (2005).

G. B. Mitchell and D. A. Kiefer, “Variability in pigment particulate fluorescence and absorption spectra in the northeastern Pacific Ocean,” Deep-Sea Res.35(5), 665–689 (1988) (Part A).
[CrossRef]

Estuar. Coast. Shelf Sci.

H. Sasaki, T. Miyamura, S. Saitoh, and J. Ishizaka, “Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan,” Estuar. Coast. Shelf Sci.64(2-3), 447–458 (2005).
[CrossRef]

Geophys. Res. Lett.

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett.32(20), L20605 (2005).
[CrossRef]

W. W. Gregg, N. W. Casey, and C. R. McClain, “Recent trends in global ocean chlorophyll,” Geophys. Res. Lett.32(3), L03606 (2005).
[CrossRef]

Global Biogeochem. Cycles

. Alvain, C. Moulin, Y. Dandonneau, and H. Loisel, “Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view,” Global Biogeochem. Cycles22(3), GB3001 (2008), doi:.
[CrossRef]

Int. J. Remote Sens.

R. A. Barnes, D. K. Clark, W. E. Esaias, G. S. Fargion, G. C. Feldman, and C. R. Mcclain, “Development of a consistent multi-sensor global ocean colour time series,” Int. J. Remote Sens.24(20), 4047–4064 (2003).
[CrossRef]

J. Geophys. Res.

D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res.110(C7), C07011 (2005).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res.100(C7), 13321–13332 (1995).
[CrossRef]

M. Szeto, P. J. Werdell, T. S. Moore, and J. W. Campbell, “Are the world’s oceans optically different?” J. Geophys. Res.116, C00H04 (2011).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semiananalytic radiance model of ocean colour,” J. Geophys. Res.93, 10,909–10,924 (1988).

A. Morel, “Optical modeling of upper ocean in relation to its biogenous matter content (Case 1 waters),” J. Geophys. Res.93(C9), 10,749–10,768 (1988).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “ Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, ” J. Geophys. Res.103(C13), 31033–31044 (1998).
[CrossRef]

J. of Geophys. Res.- Oceans

S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. time series from the Sargasso Sea.” J. of Geophys. Res.- Oceans102(C8), 18607–18625 (1997).
[CrossRef]

Limnol. Oceanogr.

J. H. Ryther and D. W. Menzel, “Light adaptation by marine phytoplankton,” Limnol. Oceanogr.4(4), 492–497 (1959).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr.48(2), 843–859 (2003).
[CrossRef]

N. P. Hoepffner and S. Sathyendrenath, “Bio-optical characteristics of coastal waters: Absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr.37(8), 1660–1679 (1992).
[CrossRef]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr.43(5), 847–858 (1998).
[CrossRef]

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr.29(2), 350–356 (1984).
[CrossRef]

Mar. Biol.

M. J. Perry, M. C. Talbot, and R. S. Alberte, “Photoadaptation in marine phytoplankton: response of the photosynthetic unit,” Mar. Biol.62(2-3), 91–101 (1981).
[CrossRef]

Nature

G. E. Fogg and G. T. Boalch, “Extracellular products in pure cultures of a brown alga,” Nature181(4611), 789–790 (1958).
[CrossRef]

New Phytol.

J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. I. general treatment of suspensions of pigmented cells,” New Phytol.75(1), 11–20 (1975).
[CrossRef]

Opt. Express

Plant Physiol.

P. G. Falkowski and T. G. Owens, “Light-shade adaptation: two strategies in marine phytoplankton,” Plant Physiol.66(4), 592–595 (1980).
[CrossRef] [PubMed]

Remote Sens. Environ.

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ.98(1), 122–140 (2005).
[CrossRef]

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, and H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential application to algorithm development,” Remote Sens. Environ.112(12), 4186–4203 (2008).
[CrossRef]

A. Morel and B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote Sens. Environ.113(5), 998–1011 (2009).
[CrossRef]

Other

P. Legendre and L. Legendre, Numerical Ecology, 2nd English ed. (Elsevier Science BV, 1998), p. 853.

K. Baith, R. Lindsey, G. Fu, and C. R. McClain, “SeaDAS: a data analysis system for ocean color satellite sensors,” in EOS, Trans. Am. Geophys. Union, (2000).

A. Morel, “Optical properties of pure seawater,” In: Optical Aspects of Oceanography N. G. Jerlov and E. Steemann Nielsen, eds. (Academic Press Inc., 1974), pp. 1–24.

S. B. Hooker, C. R. McClain, J. K. Firestone, T. L. Westphal, E. N. Yeh, and Y. Geo, “The SeaWiFS Bio-optical Archive and Storage System (SeaBASS), part 1.,” NASA Tech. Memo., 104566, Vol. 20, (Greenbelt: NASA Goddard Space Flight Center, 1994), p. 37.

NASA, “SEABASS”, http://seabass.gsfc.nasa.gov/

G. S. Fargion and C. R. McClain, SIMBIOS project 2003 annual report, NASA Tech. Memo., 2003–212251, (Greenbelt: NASA Goddard Space Flight Center, 2003), 202.

C. R. McClain, W. Esaias, G. Feldman, R. Frouin, W. Gregg, and S. B. Hooker, “The proposal for the NASA Sensor Intercalibration and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Program, NASA Tech. Memo. 2002-210008, (Greenbelt: NASA Goddard Space Flight Center, 2002), 65.

P. J. Werdell, “An evaluation of inherent optical property data for inclusion in the NASA bio-Optical Marine Algorithm Data set,” NASA Ocean Biology Processing Group, Science Systems and Applications, Inc. Document Version 1.1, corresponding to NOMAD Version 1.3, (2005).

IOCCG, “Remote sensing of ocean color in coastal, and other optically-complex waters,” in Reports of the International Ocean-Colour Coordinating Group, No. 3 Sathyendranath, S. (ed.), (IOCCG, 2000), p. 140.

H. R. Gordon and A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery: a review,” Lecture Notes on Coastal and Estuarine Studies, Volume 4 (Springer-Verlag, 1983).

J. A. Yoder, “An overview of temporal and spatial patterns in satellite-derived chlorophyll-a imagery and their relation to ocean processes,” in: Satellites, Oceanography and Society D. Halpern, ed. (Elsevier Oceanography Series, 2000), pp. 225–234.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

MODIS OC3 4th degree polynomial algorithm (red line) overlaid on the maximum reflectance band ratios. A) OC3 (MBR; 443/547nm: black circles; 490/547nm: gray + ) relationship with in situ [Chl] from the NOMAD data set. B) NOMAD in situ data set of [Chl] vs. MBRs ( + ) with coincident IOP data set.

Fig. 2
Fig. 2

NOMAD in situ aph (443) (A) and adm (443)(B) vs. in situ [Chl]. Line indicates power law relationship with [Chl] of the form AxB. In situ aph (489) and adm (489) (not shown) were similarly dispersed in their relationship with [Chl].

Fig. 3
Fig. 3

Covariance of detrital and phytoplankton absorption. Covariation between NOMAD in situ aph and adm at 443nm (A) and 489nm (B), color coded by the magnitude of bbp (443) or bbp (489) from GSM retrievals. Dashed lines are 1:1. See Table 2 for regression results.

Fig. 4
Fig. 4

IOP variability in the OC3 algorithm. NOMAD in situ [Chl a] vs. MBRs. Coincident samples are colored by aph:adm (A) at 443 or 490 determined by max MBR wavelength or (B) bbp(443). Solid line indicates OC3.

Fig. 5
Fig. 5

The detrital-free OC3” colored by in situ aph:adm at 443 or 490 determined by maximum MBR wavelength (A) and bbp (B, 443nm). The OC3 model fit is provided for comparison.

Fig. 6
Fig. 6

OC3 (A) and OC3” (B) retrieved Chl a vs. in situ [Chl]. Data points are colored by in situ aph:adm at 443 or 490 determined by max MBR wavelength. Dashed lines are 1:1.

Fig. 7
Fig. 7

[Chl] estimate error fields. Relative error in [Chl] from OC3 (A) and OC3” (B) vs. bbp (443) and color coded by in situ [Chl]. OC3” had smaller, balanced relative errors while the error in OC3 was larger and biased.

Fig. 8
Fig. 8

Modeled in situ [Chl] vs. MBRs from Hydrolight aph-based modeled Rrs using high backscattering probability (Hydrolight Case 1 Large particle) relative to OC3” curve and data dispersion. OC3 provided for comparison. Colors specify ‘OC3′ fits dependent on Chl-specific phytoplankton absorption (magnitude at 444nm shown to the side of plots). Data dispersion from in situ [Chl] vs. adm-free MBRs used to generate OC3” was bracketed by an order of magnitude range of Chl-specific phytoplankton absorption.

Tables (1)

Tables Icon

Table 1 Estimated [Chl] performance statistics. Slope and intercept statistics with (standard deviation) for the comparison of OC3 and OC3” [Chl] estimates with in situ [Chl] defined by MBR utilized: 443/547 (~low [Chl]), 490/547 (~high [Chl]), or overall results. For OC3 (full NOMAD), N = 1984; for OC3 (IOP subset) and OC3” (IOP subset), N = 771. Overall RMSE for full NOMAD OC3 = 4.52, IOP subset OC3 = 14.8, IOP subset OC3” = 5.73. Overall mean normalized bias for full NOMAD OC3 = 19.1%, IOP subset OC3 = 19.3% and OC3” = 7.42%.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

u ( λ ) =     [ b b w ( λ ) + b b p ( λ ) ] / [ a w ( λ ) + a p h ( λ ) + b b w ( λ ) + b b p ( λ ) ] ;
r r s ( 0 , λ , s r 1 ) = g 0 u ( λ ) + g 1 u ( λ ) 2 ;
R r s ( 0 + , λ , s r 1 ) = 0.52 r r s ( λ ) / [ 1 1.7 r r s ( λ ) ]
l o g 10 [ C h l ] = a 1 + a 2 l o g 10 ( r ) + a 3 l o g 10 ( r ) + a 4 l o g 10 ( r ) + a 5 l o g 10 ( r )          
r = m a x ( R r s ( 443 ) > R r s ( 490 ) ) / R r s ( 547 )
c p ( z , λ ) = c 0 [ C h l ] ( z ) n ( λ / 660 ) v  
v = 0.5 [ log 10 Chl 0.3 ] , for 0 < [ Chl ] < 0.2 v = 0 , for [ Chl ] > 0.2
K d ( λ ) = [ a T ( λ ) 2 + 0.256 a T ( λ ) b T ( λ ) ] 0.5
a T ( λ ) = a w ( λ ) + [ C h l ] a * p h ( λ ) ; [ 1 0 ]
b T ( λ ) = b w ( λ ) + 0.3 [ C h l ] 0.62 ( 550 / λ ) [ 2 0 ]

Metrics