Abstract

Two-dimensional Fourier transform spectra of a three level model system are simulated using a non-perturbative density matrix formalism. The electric field distortions resultant from using pixelated pulse shaping devices to produce phase-locked pulse pairs are modeled and the effects on the recovered spectra are examined. To minimize spectral distortions, a temporal filtering scheme is employed which eliminates contributions from spurious sample polarizations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett.297(3-4), 307–313 (1998).
    [CrossRef]
  2. I. Stiopkin, T. Brixner, M. Yang, and G. R. Fleming, “Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy,” J. Phys. Chem. B110(40), 20032–20037 (2006).
    [CrossRef] [PubMed]
  3. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
    [CrossRef] [PubMed]
  4. D. Zigmantas, E. L. Read, T. Mančal, T. Brixner, A. T. Gardiner, R. J. Cogdell, and G. R. Fleming, “Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A.103(34), 12672–12677 (2006).
    [CrossRef] [PubMed]
  5. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
    [CrossRef] [PubMed]
  6. W. Wagner, C. Li, J. Semmlow, and W. Warren, “Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode,” Opt. Express13(10), 3697–3706 (2005).
    [CrossRef] [PubMed]
  7. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett.31(6), 838–840 (2006).
    [CrossRef] [PubMed]
  8. S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007).
    [CrossRef] [PubMed]
  9. E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express15(25), 16681–16689 (2007).
    [CrossRef] [PubMed]
  10. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express16(22), 17420–17428 (2008).
    [CrossRef] [PubMed]
  11. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett.34(9), 1390–1392 (2009).
    [CrossRef] [PubMed]
  12. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express18(11), 11015–11024 (2010).
    [CrossRef] [PubMed]
  13. M. Kullmann, S. Ruetzel, J. Buback, P. Nuernberger, and T. Brixner, “Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy,” J. Am. Chem. Soc.133(33), 13074–13080 (2011).
    [CrossRef] [PubMed]
  14. K. L. M. Lewis and J. P. Ogilvie, “Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett.3(4), 503–510 (2012).
    [CrossRef]
  15. C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express17(21), 18788–18793 (2009).
    [CrossRef] [PubMed]
  16. C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
    [CrossRef] [PubMed]
  17. A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
    [CrossRef]
  18. M. A. Montgomery, E. M. Grumstrup, and N. H. Damrauer, “Fourier transform spectroscopies derived from amplitude or phase shaping of broadband laser pulses with applications to adaptive control,” J. Opt. Soc. Am. B27(12), 2518–2533 (2010).
    [CrossRef]
  19. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
    [CrossRef] [PubMed]
  20. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
  21. S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A103(49), 10489–10505 (1999).
    [CrossRef]
  22. J. Vaughan, T. Feurer, K. Stone, and K. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express14(3), 1314–1328 (2006).
    [CrossRef] [PubMed]
  23. K. Blum, Density Matrix Theory and Applications, Physics of Atoms and Molecules, 2nd ed., (Plenum Press, 1996).
  24. R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier/Academic Press, 2008).
  25. A. M. Weiner, S. DeSilvestri, and E. P. Ippen, “Three-Pulse scattering for femtosecond dephasing studies - theory and experiment,” J. Opt. Soc. Am. B2(4), 654–662 (1985).
    [CrossRef]
  26. H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science316(5830), 1462–1465 (2007).
    [CrossRef] [PubMed]
  27. L. Seidner, G. Stock, and W. Domcke, “Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes,” J. Chem. Phys.103(10), 3998–4011 (1995).
    [CrossRef]
  28. B. Wolfseder, L. Seidner, G. Stock, and W. Domcke, “Femtosecond pump-probe spectroscopy of electron-transfer systems: a nonperturbative approach,” Chem. Phys.217(2-3), 275–287 (1997).
    [CrossRef]
  29. H. Wang and M. Thoss, “Nonperturbative simulation of pump–probe spectra for electron transfer reactions in the condensed phase,” Chem. Phys. Lett.389(1-3), 43–50 (2004).
    [CrossRef]
  30. T. S. Mančal, A. V. Pisliakov, and G. R. Fleming, “Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra,” J. Chem. Phys.124(23), 234504 (2006).
    [CrossRef] [PubMed]
  31. A. Albrecht, J. Hybl, S. Faeder, and D. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111(24), 10934–10956 (1999).
    [CrossRef]
  32. J. Hybl, Y. Christophe, and D. Jonas, “Peak shapes in femtosecond 2D correlation spectroscopy,” Chem. Phys.266(2-3), 295–309 (2001).
    [CrossRef]
  33. D. Jonas, (personal communication, August 10, 2011).

2012

K. L. M. Lewis and J. P. Ogilvie, “Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett.3(4), 503–510 (2012).
[CrossRef]

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

2011

M. Kullmann, S. Ruetzel, J. Buback, P. Nuernberger, and T. Brixner, “Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy,” J. Am. Chem. Soc.133(33), 13074–13080 (2011).
[CrossRef] [PubMed]

2010

2009

2008

2007

E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express15(25), 16681–16689 (2007).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007).
[CrossRef] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science316(5830), 1462–1465 (2007).
[CrossRef] [PubMed]

2006

T. S. Mančal, A. V. Pisliakov, and G. R. Fleming, “Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra,” J. Chem. Phys.124(23), 234504 (2006).
[CrossRef] [PubMed]

D. Zigmantas, E. L. Read, T. Mančal, T. Brixner, A. T. Gardiner, R. J. Cogdell, and G. R. Fleming, “Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A.103(34), 12672–12677 (2006).
[CrossRef] [PubMed]

I. Stiopkin, T. Brixner, M. Yang, and G. R. Fleming, “Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy,” J. Phys. Chem. B110(40), 20032–20037 (2006).
[CrossRef] [PubMed]

J. Vaughan, T. Feurer, K. Stone, and K. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express14(3), 1314–1328 (2006).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett.31(6), 838–840 (2006).
[CrossRef] [PubMed]

2005

2004

H. Wang and M. Thoss, “Nonperturbative simulation of pump–probe spectra for electron transfer reactions in the condensed phase,” Chem. Phys. Lett.389(1-3), 43–50 (2004).
[CrossRef]

2003

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
[CrossRef] [PubMed]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

2001

J. Hybl, Y. Christophe, and D. Jonas, “Peak shapes in femtosecond 2D correlation spectroscopy,” Chem. Phys.266(2-3), 295–309 (2001).
[CrossRef]

2000

A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

1999

S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A103(49), 10489–10505 (1999).
[CrossRef]

A. Albrecht, J. Hybl, S. Faeder, and D. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111(24), 10934–10956 (1999).
[CrossRef]

1998

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett.297(3-4), 307–313 (1998).
[CrossRef]

1997

B. Wolfseder, L. Seidner, G. Stock, and W. Domcke, “Femtosecond pump-probe spectroscopy of electron-transfer systems: a nonperturbative approach,” Chem. Phys.217(2-3), 275–287 (1997).
[CrossRef]

1995

L. Seidner, G. Stock, and W. Domcke, “Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes,” J. Chem. Phys.103(10), 3998–4011 (1995).
[CrossRef]

1985

Ahn, T.-K.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Albrecht, A.

A. Albrecht, J. Hybl, S. Faeder, and D. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111(24), 10934–10956 (1999).
[CrossRef]

Albrecht, A. W.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett.297(3-4), 307–313 (1998).
[CrossRef]

Blankenship, R. E.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Brixner, T.

M. Kullmann, S. Ruetzel, J. Buback, P. Nuernberger, and T. Brixner, “Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy,” J. Am. Chem. Soc.133(33), 13074–13080 (2011).
[CrossRef] [PubMed]

I. Stiopkin, T. Brixner, M. Yang, and G. R. Fleming, “Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy,” J. Phys. Chem. B110(40), 20032–20037 (2006).
[CrossRef] [PubMed]

D. Zigmantas, E. L. Read, T. Mančal, T. Brixner, A. T. Gardiner, R. J. Cogdell, and G. R. Fleming, “Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A.103(34), 12672–12677 (2006).
[CrossRef] [PubMed]

Buback, J.

M. Kullmann, S. Ruetzel, J. Buback, P. Nuernberger, and T. Brixner, “Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy,” J. Am. Chem. Soc.133(33), 13074–13080 (2011).
[CrossRef] [PubMed]

Calhoun, T. R.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Cheng, Y.-C.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science316(5830), 1462–1465 (2007).
[CrossRef] [PubMed]

Christophe, Y.

J. Hybl, Y. Christophe, and D. Jonas, “Peak shapes in femtosecond 2D correlation spectroscopy,” Chem. Phys.266(2-3), 295–309 (2001).
[CrossRef]

Cogdell, R. J.

D. Zigmantas, E. L. Read, T. Mančal, T. Brixner, A. T. Gardiner, R. J. Cogdell, and G. R. Fleming, “Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A.103(34), 12672–12677 (2006).
[CrossRef] [PubMed]

Damrauer, N. H.

DeSilvestri, S.

Domcke, W.

B. Wolfseder, L. Seidner, G. Stock, and W. Domcke, “Femtosecond pump-probe spectroscopy of electron-transfer systems: a nonperturbative approach,” Chem. Phys.217(2-3), 275–287 (1997).
[CrossRef]

L. Seidner, G. Stock, and W. Domcke, “Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes,” J. Chem. Phys.103(10), 3998–4011 (1995).
[CrossRef]

Engel, G. S.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Faeder, S.

A. Albrecht, J. Hybl, S. Faeder, and D. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111(24), 10934–10956 (1999).
[CrossRef]

Feurer, T.

Fleming, G. R.

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science316(5830), 1462–1465 (2007).
[CrossRef] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

D. Zigmantas, E. L. Read, T. Mančal, T. Brixner, A. T. Gardiner, R. J. Cogdell, and G. R. Fleming, “Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A.103(34), 12672–12677 (2006).
[CrossRef] [PubMed]

I. Stiopkin, T. Brixner, M. Yang, and G. R. Fleming, “Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy,” J. Phys. Chem. B110(40), 20032–20037 (2006).
[CrossRef] [PubMed]

T. S. Mančal, A. V. Pisliakov, and G. R. Fleming, “Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra,” J. Chem. Phys.124(23), 234504 (2006).
[CrossRef] [PubMed]

Fuller, F. D.

Fulmer, E. C.

Gallagher Faeder, S. M.

S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A103(49), 10489–10505 (1999).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett.297(3-4), 307–313 (1998).
[CrossRef]

Gardiner, A. T.

D. Zigmantas, E. L. Read, T. Mančal, T. Brixner, A. T. Gardiner, R. J. Cogdell, and G. R. Fleming, “Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A.103(34), 12672–12677 (2006).
[CrossRef] [PubMed]

Grumstrup, E. M.

Hybl, J.

J. Hybl, Y. Christophe, and D. Jonas, “Peak shapes in femtosecond 2D correlation spectroscopy,” Chem. Phys.266(2-3), 295–309 (2001).
[CrossRef]

A. Albrecht, J. Hybl, S. Faeder, and D. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111(24), 10934–10956 (1999).
[CrossRef]

Hybl, J. D.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett.297(3-4), 307–313 (1998).
[CrossRef]

Ippen, E. P.

Jonas, D.

J. Hybl, Y. Christophe, and D. Jonas, “Peak shapes in femtosecond 2D correlation spectroscopy,” Chem. Phys.266(2-3), 295–309 (2001).
[CrossRef]

A. Albrecht, J. Hybl, S. Faeder, and D. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111(24), 10934–10956 (1999).
[CrossRef]

Jonas, D. M.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
[CrossRef] [PubMed]

S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A103(49), 10489–10505 (1999).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett.297(3-4), 307–313 (1998).
[CrossRef]

Keusters, D.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Kotur, M.

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

Kullmann, M.

M. Kullmann, S. Ruetzel, J. Buback, P. Nuernberger, and T. Brixner, “Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy,” J. Am. Chem. Soc.133(33), 13074–13080 (2011).
[CrossRef] [PubMed]

Lee, H.

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science316(5830), 1462–1465 (2007).
[CrossRef] [PubMed]

Lewis, K. L. M.

Li, C.

Ling, Y. L.

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007).
[CrossRef] [PubMed]

Mancal, T.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

D. Zigmantas, E. L. Read, T. Mančal, T. Brixner, A. T. Gardiner, R. J. Cogdell, and G. R. Fleming, “Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A.103(34), 12672–12677 (2006).
[CrossRef] [PubMed]

Mancal, T. S.

T. S. Mančal, A. V. Pisliakov, and G. R. Fleming, “Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra,” J. Chem. Phys.124(23), 234504 (2006).
[CrossRef] [PubMed]

Matsika, S.

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express17(21), 18788–18793 (2009).
[CrossRef] [PubMed]

Montgomery, M. A.

Myers, J. A.

Nelson, K.

Nuernberger, P.

M. Kullmann, S. Ruetzel, J. Buback, P. Nuernberger, and T. Brixner, “Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy,” J. Am. Chem. Soc.133(33), 13074–13080 (2011).
[CrossRef] [PubMed]

Ogilvie, J. P.

Pisliakov, A. V.

T. S. Mančal, A. V. Pisliakov, and G. R. Fleming, “Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra,” J. Chem. Phys.124(23), 234504 (2006).
[CrossRef] [PubMed]

Read, E. L.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

D. Zigmantas, E. L. Read, T. Mančal, T. Brixner, A. T. Gardiner, R. J. Cogdell, and G. R. Fleming, “Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A.103(34), 12672–12677 (2006).
[CrossRef] [PubMed]

Ruetzel, S.

M. Kullmann, S. Ruetzel, J. Buback, P. Nuernberger, and T. Brixner, “Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy,” J. Am. Chem. Soc.133(33), 13074–13080 (2011).
[CrossRef] [PubMed]

Sándor, P.

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

Seidner, L.

B. Wolfseder, L. Seidner, G. Stock, and W. Domcke, “Femtosecond pump-probe spectroscopy of electron-transfer systems: a nonperturbative approach,” Chem. Phys.217(2-3), 275–287 (1997).
[CrossRef]

L. Seidner, G. Stock, and W. Domcke, “Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes,” J. Chem. Phys.103(10), 3998–4011 (1995).
[CrossRef]

Semmlow, J.

Shim, S. H.

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett.31(6), 838–840 (2006).
[CrossRef] [PubMed]

Shim, S.-H.

Stiopkin, I.

I. Stiopkin, T. Brixner, M. Yang, and G. R. Fleming, “Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy,” J. Phys. Chem. B110(40), 20032–20037 (2006).
[CrossRef] [PubMed]

Stock, G.

B. Wolfseder, L. Seidner, G. Stock, and W. Domcke, “Femtosecond pump-probe spectroscopy of electron-transfer systems: a nonperturbative approach,” Chem. Phys.217(2-3), 275–287 (1997).
[CrossRef]

L. Seidner, G. Stock, and W. Domcke, “Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes,” J. Chem. Phys.103(10), 3998–4011 (1995).
[CrossRef]

Stone, K.

Strasfeld, D. B.

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett.31(6), 838–840 (2006).
[CrossRef] [PubMed]

Suzaki, Y.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Tekavec, P. F.

Thoss, M.

H. Wang and M. Thoss, “Nonperturbative simulation of pump–probe spectra for electron transfer reactions in the condensed phase,” Chem. Phys. Lett.389(1-3), 43–50 (2004).
[CrossRef]

Tian, P.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Tseng, C. H.

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express17(21), 18788–18793 (2009).
[CrossRef] [PubMed]

Vaughan, J.

Wagner, W.

Wang, H.

H. Wang and M. Thoss, “Nonperturbative simulation of pump–probe spectra for electron transfer reactions in the condensed phase,” Chem. Phys. Lett.389(1-3), 43–50 (2004).
[CrossRef]

Warren, W.

Warren, W. S.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Weinacht, T. C.

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express17(21), 18788–18793 (2009).
[CrossRef] [PubMed]

Weiner, A.

A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Weiner, A. M.

Wolfseder, B.

B. Wolfseder, L. Seidner, G. Stock, and W. Domcke, “Femtosecond pump-probe spectroscopy of electron-transfer systems: a nonperturbative approach,” Chem. Phys.217(2-3), 275–287 (1997).
[CrossRef]

Yang, M.

I. Stiopkin, T. Brixner, M. Yang, and G. R. Fleming, “Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy,” J. Phys. Chem. B110(40), 20032–20037 (2006).
[CrossRef] [PubMed]

Zanni, M. T.

Zigmantas, D.

D. Zigmantas, E. L. Read, T. Mančal, T. Brixner, A. T. Gardiner, R. J. Cogdell, and G. R. Fleming, “Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A.103(34), 12672–12677 (2006).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
[CrossRef] [PubMed]

Chem. Phys.

B. Wolfseder, L. Seidner, G. Stock, and W. Domcke, “Femtosecond pump-probe spectroscopy of electron-transfer systems: a nonperturbative approach,” Chem. Phys.217(2-3), 275–287 (1997).
[CrossRef]

J. Hybl, Y. Christophe, and D. Jonas, “Peak shapes in femtosecond 2D correlation spectroscopy,” Chem. Phys.266(2-3), 295–309 (2001).
[CrossRef]

Chem. Phys. Lett.

H. Wang and M. Thoss, “Nonperturbative simulation of pump–probe spectra for electron transfer reactions in the condensed phase,” Chem. Phys. Lett.389(1-3), 43–50 (2004).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett.297(3-4), 307–313 (1998).
[CrossRef]

J. Am. Chem. Soc.

M. Kullmann, S. Ruetzel, J. Buback, P. Nuernberger, and T. Brixner, “Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy,” J. Am. Chem. Soc.133(33), 13074–13080 (2011).
[CrossRef] [PubMed]

J. Chem. Phys.

T. S. Mančal, A. V. Pisliakov, and G. R. Fleming, “Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra,” J. Chem. Phys.124(23), 234504 (2006).
[CrossRef] [PubMed]

A. Albrecht, J. Hybl, S. Faeder, and D. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111(24), 10934–10956 (1999).
[CrossRef]

L. Seidner, G. Stock, and W. Domcke, “Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes,” J. Chem. Phys.103(10), 3998–4011 (1995).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A103(49), 10489–10505 (1999).
[CrossRef]

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012).
[CrossRef] [PubMed]

J. Phys. Chem. B

I. Stiopkin, T. Brixner, M. Yang, and G. R. Fleming, “Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy,” J. Phys. Chem. B110(40), 20032–20037 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. Lett.

K. L. M. Lewis and J. P. Ogilvie, “Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett.3(4), 503–510 (2012).
[CrossRef]

Nature

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007).
[CrossRef] [PubMed]

D. Zigmantas, E. L. Read, T. Mančal, T. Brixner, A. T. Gardiner, R. J. Cogdell, and G. R. Fleming, “Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A.103(34), 12672–12677 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Science

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science316(5830), 1462–1465 (2007).
[CrossRef] [PubMed]

Other

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).

D. Jonas, (personal communication, August 10, 2011).

K. Blum, Density Matrix Theory and Applications, Physics of Atoms and Molecules, 2nd ed., (Plenum Press, 1996).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier/Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Ideal pulse shaping produces a pulse pair comprised of E1 and E2 which are separated by . The pulse pair contained in the “pump” beam together with the third pulse, E3, contained in the “probe” beam produce the third order polarization which radiates the signal field, Esig. The parameter T is the interval between the second (E2) and third (E3, probe) pulse. Non-ideal pulse shaping results in spurious pulses (Esp1 and Esp2 are shown above with red, dotted lines). In this work, t = 0 is defined as the arrival time of the probe pulse (E3) in the sample.

Fig. 2
Fig. 2

Spectral amplitude, | ϵ ˜ out ( ω;τ=500fs ) | , for ideal pulse shaping (red) and 0.5 nm pixel resolution (black).

Fig. 3
Fig. 3

(top) Real and imaginary spectra for T = 0 fs for the three level model with = 0.01 fs−1. (bottom) Real and imaginary spectra for T = 100 fs. Warm colors indicate positive amplitude and cold colors indicate negative amplitude. The contours demarcate 10% intervals of the total amplitude. The spectra in the top panel show a phase twist due to pulse overlap effects which are not present in the lower panel. This is highlighted by the dashed lines within the two imaginary spectra.

Fig. 4
Fig. 4

(left) Real (absorptive) spectra for T = 100 fs and τ = 0.01 fs−1 for the three level model with pixel resolution Δλ = 0.5 nm (top), 1.0 nm (middle), and 1.5 nm (bottom). Contour lines are at 10% intervals of the maximum. (right) Corresponding difference spectra showing the subtraction of ideal from the data determined using pixilated pulse shaping. Contour lines are at 2% intervals of the real, ideal spectrum. The maximum deviations from the ideal spectrum are 5.6%, 11.8%, and 18.6% for Δλ = 0.5, 1.0, and 1.5 nm.

Fig. 5
Fig. 5

black: Calculated | P ˜ 2D ( 3 ) (t) | for Δλ = 1 nm, T = 100 fs, and τ = 350 fs. green: Hyperbolic tangent filter used in this work.

Fig. 6
Fig. 6

Difference spectra (real; subtracting ideal from the temporally filtered data) for cases of a) Δλ = 0.5 nm, b) 1.0 nm, and c) 1.5 nm. Contour lines correspond to 0.2% deviation from the ideal spectrum. In d) is shown the real spectrum for Δλ = 1.5 nm (compare Fig. 4 (bottom left panel)), showing that even with poor resolution, well-shaped peaks can be recovered after temporal filtering.

Fig. 7
Fig. 7

Electric field amplitude generated by inverse Fourier transform of Eq. (3). Parameters are τ = 350 fs and Δλ = 1.0 nm, and T = 100 fs. Experimentally, pulse E3 has wavevector k3, while pulses E1 and E2 have wave vectors k1. Note that because Esp1 and Esp2 are a consequence of the pixelated pulse-shaping device, they are collinear with E1 and E2 and also propagate along k1. The spurious pulses are located at t ~1.7 ps and ~3.8 ps, corresponding to ~2π/Δ ω c , 4π/Δ ω n , etc. Inset: detail of pulses E1, E2, and E3.

Fig. 8
Fig. 8

Double sided Feynman diagrams showing the Liouville pathways contributing to the spurious polarization The indices 0, 1, and 2 refer to the states in the model and therefore to elements of the density matrix (so that 00 refers to ρ 00 , etc). Exchange of excited state 2 for excited state 1 in the above diagrams results in the four pathways not explicitly shown.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

a( ω;τ )=| cos( ωτ 2 ) |
p( ω;τ )= ωτ 2 +( π 2 π 2 sgn[ cos{ ωτ 2 } ] )
ϵ ˜ total ( ω )= 1 2 n d ω n | ϵ ˜ in ( ω ) |Π[ ( ω ω n ) Δ n ]× { exp[ i( ω n τ 2 + ϕ 1 ) ]+exp[ i( ω n τ 2 + ϕ 2 ) ] }exp[ i( ω n τ 2 +ωT ) ]+| ϵ ˜ 3 ( ω ) |exp( i ϕ 3 )
ϵ ˜ total ( ω )= 1 2 | ϵ ˜ in ( ω ) |{ exp[ i( ωτ 2 + ϕ 1 ) ]+exp[ i( ωτ 2 + ϕ 2 ) ] }× exp[ i( ωτ 2 +ωT ) ]+| ϵ ˜ 3 ( ω ) |exp( i ϕ 3 )
P 2D (3) ( t,T,τ )= 0 d t 3 0 d t 2 0 d t 1 E( t+τ+T t 3 t 2 t 1 )× E( t+T t 3 t 2 )E( t t 3 )R( t 1 , t 2 , t 3 )
F( t )= 1 2 { ( tanh( t+ t + a )+1 )( tanh( t+ t a )+1 ) }

Metrics