Abstract

We have proposed a metal-insulator-metal (MIM) waveguide system, which exhibits a significant slow-light effect, based on a plasmonic analogue of electromagnetically induced transparency (EIT). By appropriately adjusting the distance between the two stubs of a unit cell, a flat band corresponding to nearly constant group index over a broad bandwidth of 8.6 THz can be achieved. The analytical results show that the group velocity dispersion (GVD) parameter can reach zero and normalized delay-bandwidth product (NDBP) is more than 0.522. Finite-Difference Time-Domain (FDTD) simulations show that the incident pulse can be slowed down without distortion owing to the low dispersion. The proposed compact configuration can avoid the distortion of signal pulse, and thus may find potential applications in plasmonic slow-light systems, especially optical buffers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
    [CrossRef]
  2. C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 409–411 (2001).
    [CrossRef] [PubMed]
  3. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B22(5), 1062–1074 (2005).
    [CrossRef]
  4. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
    [CrossRef] [PubMed]
  5. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
    [CrossRef]
  6. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007).
    [CrossRef]
  7. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
    [CrossRef] [PubMed]
  8. L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett.35(24), 4184–4186 (2010).
    [CrossRef] [PubMed]
  9. L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon ploaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
    [CrossRef]
  10. Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional perildically structured metal surface,” Appl. Phys. Lett.90(20), 201906 (2007).
    [CrossRef]
  11. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
    [CrossRef] [PubMed]
  12. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
    [CrossRef] [PubMed]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  14. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  15. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express18(17), 17922–17927 (2010).
    [CrossRef] [PubMed]
  16. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19(4), 3513–3518 (2011).
    [CrossRef] [PubMed]
  17. G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101(1), 013111 (2012).
    [CrossRef]
  18. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010).
    [CrossRef]
  19. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
    [CrossRef]
  20. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett.36(16), 3233–3235 (2011).
    [CrossRef] [PubMed]
  21. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A85(5), 053803 (2012).
    [CrossRef]
  22. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011).
    [CrossRef]
  23. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
    [CrossRef] [PubMed]
  24. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
    [CrossRef] [PubMed]
  25. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express16(1), 413–425 (2008).
    [CrossRef] [PubMed]
  26. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express18(6), 6191–6204 (2010).
    [CrossRef] [PubMed]
  27. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
    [CrossRef]
  28. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express17(22), 20134–20139 (2009).
    [CrossRef] [PubMed]
  29. X. Piao, S. Yu, S. Koo, K. Lee, and N. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Opt. Express19(11), 10907–10912 (2011).
    [CrossRef] [PubMed]
  30. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express16(12), 9245–9253 (2008).
    [CrossRef] [PubMed]
  31. R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion,” Opt. Express18(6), 5942–5950 (2010).
    [CrossRef] [PubMed]
  32. J. Zhang, L. Cai, W. Bai, and G. Song, “Flat surface plasmon polariton bands in Bragg grating waveguide for slow light,” J. Lightwave Technol.28(14), 2030–2036 (2010).
    [CrossRef]

2012 (2)

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101(1), 013111 (2012).
[CrossRef]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A85(5), 053803 (2012).
[CrossRef]

2011 (4)

2010 (8)

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express18(17), 17922–17927 (2010).
[CrossRef] [PubMed]

L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett.35(24), 4184–4186 (2010).
[CrossRef] [PubMed]

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion,” Opt. Express18(6), 5942–5950 (2010).
[CrossRef] [PubMed]

J. Zhang, L. Cai, W. Bai, and G. Song, “Flat surface plasmon polariton bands in Bragg grating waveguide for slow light,” J. Lightwave Technol.28(14), 2030–2036 (2010).
[CrossRef]

A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express18(6), 6191–6204 (2010).
[CrossRef] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

2009 (3)

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express17(22), 20134–20139 (2009).
[CrossRef] [PubMed]

L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon ploaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
[CrossRef]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

2008 (4)

2007 (4)

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional perildically structured metal surface,” Appl. Phys. Lett.90(20), 201906 (2007).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007).
[CrossRef]

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

2006 (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

2005 (2)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B22(5), 1062–1074 (2005).
[CrossRef]

2004 (2)

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2001 (1)

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 409–411 (2001).
[CrossRef] [PubMed]

Adachi, J.

Agrawal, G. P.

Baba, T.

Bai, W.

Barnard, E. S.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartoli, F. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon ploaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
[CrossRef] [PubMed]

Behroozi, C.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 409–411 (2001).
[CrossRef] [PubMed]

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010).
[CrossRef]

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Brongersma, M. L.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Cai, L.

Cai, W.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Cassan, E.

Chen, L.

L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon ploaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
[CrossRef]

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010).
[CrossRef]

De Vries, T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Den Besten, J. H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
[CrossRef] [PubMed]

Dorren, H. J. S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Duan, L.

Dutton, Z.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 409–411 (2001).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
[CrossRef] [PubMed]

Fang, G.

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
[CrossRef] [PubMed]

Gan, Q.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon ploaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
[CrossRef] [PubMed]

Gong, Y.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Han, Z.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

Hao, R.

Hattori, H. T.

Hau, L.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 409–411 (2001).
[CrossRef] [PubMed]

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

Hill, M. T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Huang, Y.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011).
[CrossRef]

Kawaaski, T.

Kekatpure, R. D.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Khoe, G. D.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Khurgin, J. B.

Kim, H.

Koo, S.

Kuipers, L.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007).
[CrossRef]

Kurt, H.

Le Roux, X.

Lee, B.

Lee, K.

Leijtens, X. J. M.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Liu, C.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 409–411 (2001).
[CrossRef] [PubMed]

Liu, J.

Liu, S.

Liu, X.

Lu, H.

Mao, D.

Marris-Morini, D.

Min, C.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011).
[CrossRef]

L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett.35(24), 4184–4186 (2010).
[CrossRef] [PubMed]

Mori, D.

Oei, Y. S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Pannipitiya, A.

Park, J.

Park, N.

Piao, X.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Premaratne, M.

Qiu, M.

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional perildically structured metal surface,” Appl. Phys. Lett.90(20), 201906 (2007).
[CrossRef]

Ruan, Z.

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional perildically structured metal surface,” Appl. Phys. Lett.90(20), 201906 (2007).
[CrossRef]

Rukhlenko, I. D.

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Sandtke, M.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007).
[CrossRef]

Sasaki, H.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Smit, M. K.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Song, G.

Veronis, G.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011).
[CrossRef]

L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett.35(24), 4184–4186 (2010).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

Vivien, L.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Wang, G.

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101(1), 013111 (2012).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett.36(16), 3233–3235 (2011).
[CrossRef] [PubMed]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19(4), 3513–3518 (2011).
[CrossRef] [PubMed]

L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon ploaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
[CrossRef]

Wang, L.

Wu, H.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Yang, L.

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
[CrossRef] [PubMed]

Yu, S.

Zhang, J.

Zhang, X.

Zhang, Y.

Zhao, H.

Zhou, Z.

Appl. Phys. Lett. (4)

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional perildically structured metal surface,” Appl. Phys. Lett.90(20), 201906 (2007).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101(1), 013111 (2012).
[CrossRef]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (5)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Nature (3)

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 409–411 (2001).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (8)

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express17(22), 20134–20139 (2009).
[CrossRef] [PubMed]

X. Piao, S. Yu, S. Koo, K. Lee, and N. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Opt. Express19(11), 10907–10912 (2011).
[CrossRef] [PubMed]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express16(12), 9245–9253 (2008).
[CrossRef] [PubMed]

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion,” Opt. Express18(6), 5942–5950 (2010).
[CrossRef] [PubMed]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express16(1), 413–425 (2008).
[CrossRef] [PubMed]

A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express18(6), 6191–6204 (2010).
[CrossRef] [PubMed]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express18(17), 17922–17927 (2010).
[CrossRef] [PubMed]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19(4), 3513–3518 (2011).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A85(5), 053803 (2012).
[CrossRef]

Phys. Rev. B (1)

L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon ploaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009).
[CrossRef]

Phys. Rev. Lett. (5)

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008).
[CrossRef] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: MOV (380 KB)     
» Media 2: MOV (518 KB)     
» Media 3: MOV (720 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the MIM plasmonic waveguide system: w, the width of the waveguide and stubs; p, the period of each unit cell; q, the distance between the two stubs in a unit cell; h, the stub depth. The light vertically illuminates the structure from the left side. (b) Equivalent circuit of the proposed plasmonic waveguide system.

Fig. 2
Fig. 2

(a) Evolution of transmission spectrum with the distance between the two stubs in a unit cell. The width of the waveguide and stub is w = 50 nm and the depths of the two stubs are h1 = 100 nm and 160 nm, respectively. (b)Transmission spectrum from the transmission line theory and FDTD method for one unit cell with q = 290 nm and p = 590 nm. (c)-(e) Field distributions of |Hz|2 at the transmitted-dip and induced-transparency wavelengths (Media 1, Media 2, Media 3).

Fig. 3
Fig. 3

(a) Dispersion curves calculated using transmission line theory (red dashed line) for different q. The parameters of the structure are: w = 50 nm, h1 = 100 nm, h2 = 160 nm, p = 590 nm. Inset shows the transmission for 11 unit cells with p = 700 nm. Also shown are the dispersion curves for lossless metal (black solid line). (b) Absolute group index of SPPs as a function of the frequency with q = 290 nm. (c)-(d) Second- and third-order dispersion parameters of the structure.

Fig. 4
Fig. 4

Time evolution of intensity profile of the SPP pulse propagating through the waveguide system. In the FDTD simulations, 11 unit cells couple to the MIM waveguide and the other parameters are the same as that in Fig. 2(b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

cosh( Kp )= 1 2 [cos(β( p+q ))(2+ Z MIM 2 2 Z stub1 Z stub2 )isin( β( p+q ) )( Z MIM Z stub1 + Z MIM Z stub2 ) 1 2 cos( β( pq ) ) Z MIM 2 Z stub1 Z stub2 ]
n ˜ g = ω 0 ω 0 +Δω n g ( ω ) ×dω/Δω,

Metrics