Abstract

We demonstrate cw output powers >290 mW into a nearly diffraction-limited (M2 ≈2.2) output beam from an interband cascade laser operating at λ = 3.6-3.7 μm at room temperature. The interband cascade laser was designed for nearly equal electron and hole populations in the active region with heavy electron-injector doping, and was processed into narrow ridges mounted epitaxial side down on a copper heat sink. A 15.7-μm-wide, 4-mm-long ridge with the back facet coated for high reflection (HR) and an anti-reflection-coated front facet produced 253 mW of cw output power at T = 25°C into a beam with M2 ≈2.7. Furthermore, corrugating the sidewalls of the ridge leads to a 20% improvement in the brightness. A 15.7-μm-wide, 0.5-mm-long ridge with an HR-coated back facet and an uncoated front facet exhibited a maximum cw wall-plug efficiency of nearly 15% at room temperature.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Q. Yang, “Infrared-laser based on intersubband transitions in quantum-wells,” Superlattices Microstruct.17(1), 77–83 (1995).
    [CrossRef]
  2. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
    [CrossRef]
  3. I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys.11(12), 125015 (2009).
    [CrossRef]
  4. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1435–1444 (2011).
    [CrossRef]
  5. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun.2, 585 (2011).
    [CrossRef] [PubMed]
  6. W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express20(3), 3235–3240 (2012).
    [CrossRef] [PubMed]
  7. C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol.26(3), 1160–1162 (2008).
    [CrossRef]
  8. J. Buus, “Analytical approximation for the reflectivity of DH lasers,” IEEE J. Quantum Electron.17(12), 2256–2257 (1981).
    [CrossRef]
  9. A. Chandola, R. Pino, and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb,” Semicond. Sci. Technol.20(8), 886–893 (2005).
    [CrossRef]
  10. T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
    [CrossRef]
  11. C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
    [CrossRef]
  12. I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee, and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed-feedback lasers,” J. Appl. Phys.88(12), 6997–7005 (2000).
    [CrossRef]
  13. W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR interband cascade lasers operating with <30 mW of input power,” Proc. SPIE8374, 83740H, 83740H-9 (2012).
    [CrossRef]
  14. Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett.97(25), 251104 (2010).
    [CrossRef]
  15. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room-temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
    [CrossRef]
  16. Y. Bai, S. R. Darvish, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Optimizing facet coating of quantum cascade lasers for low power consumption,” J. Appl. Phys.109(5), 053103 (2011).
    [CrossRef]
  17. F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, Jr., and C.-E. Zah, “Continuous wave operation of distributed feedback quantum cascade lasers with low threshold voltage and small divergent angle for CO2 isotope sensor,” in Proceetings of SPIE Photon. West (San Francisco, 21–26 January 2012).
  18. B. Hinkov, A. Bismuto, and R. Terazzi, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Junction-up mounted, mid-infrared emitting, continuous-wave DB quantum cascade lasers with very low (< 900 mW) electrical dissipation at room temperature,” Conference on Lasers and Electro-Optics (San Jose, 6–11 May 2012).

2012

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR interband cascade lasers operating with <30 mW of input power,” Proc. SPIE8374, 83740H, 83740H-9 (2012).
[CrossRef]

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express20(3), 3235–3240 (2012).
[CrossRef] [PubMed]

2011

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1435–1444 (2011).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun.2, 585 (2011).
[CrossRef] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room-temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Y. Bai, S. R. Darvish, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Optimizing facet coating of quantum cascade lasers for low power consumption,” J. Appl. Phys.109(5), 053103 (2011).
[CrossRef]

2010

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett.97(25), 251104 (2010).
[CrossRef]

2009

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys.11(12), 125015 (2009).
[CrossRef]

2008

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol.26(3), 1160–1162 (2008).
[CrossRef]

2005

A. Chandola, R. Pino, and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb,” Semicond. Sci. Technol.20(8), 886–893 (2005).
[CrossRef]

2002

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

2000

I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee, and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed-feedback lasers,” J. Appl. Phys.88(12), 6997–7005 (2000).
[CrossRef]

1996

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
[CrossRef]

1995

R. Q. Yang, “Infrared-laser based on intersubband transitions in quantum-wells,” Superlattices Microstruct.17(1), 77–83 (1995).
[CrossRef]

1981

J. Buus, “Analytical approximation for the reflectivity of DH lasers,” IEEE J. Quantum Electron.17(12), 2256–2257 (1981).
[CrossRef]

Abell, J.

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR interband cascade lasers operating with <30 mW of input power,” Proc. SPIE8374, 83740H, 83740H-9 (2012).
[CrossRef]

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express20(3), 3235–3240 (2012).
[CrossRef] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1435–1444 (2011).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun.2, 585 (2011).
[CrossRef] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys.11(12), 125015 (2009).
[CrossRef]

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room-temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Y. Bai, S. R. Darvish, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Optimizing facet coating of quantum cascade lasers for low power consumption,” J. Appl. Phys.109(5), 053103 (2011).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett.97(25), 251104 (2010).
[CrossRef]

Bandyopadhyay, N.

Y. Bai, S. R. Darvish, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Optimizing facet coating of quantum cascade lasers for low power consumption,” J. Appl. Phys.109(5), 053103 (2011).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room-temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett.97(25), 251104 (2010).
[CrossRef]

Bartolo, R. E.

I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee, and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed-feedback lasers,” J. Appl. Phys.88(12), 6997–7005 (2000).
[CrossRef]

Bewley, W. W.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express20(3), 3235–3240 (2012).
[CrossRef] [PubMed]

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR interband cascade lasers operating with <30 mW of input power,” Proc. SPIE8374, 83740H, 83740H-9 (2012).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun.2, 585 (2011).
[CrossRef] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1435–1444 (2011).
[CrossRef]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys.11(12), 125015 (2009).
[CrossRef]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol.26(3), 1160–1162 (2008).
[CrossRef]

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee, and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed-feedback lasers,” J. Appl. Phys.88(12), 6997–7005 (2000).
[CrossRef]

Borca-Tasciuc, T.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

Buus, J.

J. Buus, “Analytical approximation for the reflectivity of DH lasers,” IEEE J. Quantum Electron.17(12), 2256–2257 (1981).
[CrossRef]

Canedy, C. L.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express20(3), 3235–3240 (2012).
[CrossRef] [PubMed]

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR interband cascade lasers operating with <30 mW of input power,” Proc. SPIE8374, 83740H, 83740H-9 (2012).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun.2, 585 (2011).
[CrossRef] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1435–1444 (2011).
[CrossRef]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys.11(12), 125015 (2009).
[CrossRef]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol.26(3), 1160–1162 (2008).
[CrossRef]

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Chandola, A.

A. Chandola, R. Pino, and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb,” Semicond. Sci. Technol.20(8), 886–893 (2005).
[CrossRef]

Chen, G.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

Darvish, S. R.

Y. Bai, S. R. Darvish, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Optimizing facet coating of quantum cascade lasers for low power consumption,” J. Appl. Phys.109(5), 053103 (2011).
[CrossRef]

Dutta, P. S.

A. Chandola, R. Pino, and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb,” Semicond. Sci. Technol.20(8), 886–893 (2005).
[CrossRef]

Felix, C. L.

I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee, and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed-feedback lasers,” J. Appl. Phys.88(12), 6997–7005 (2000).
[CrossRef]

Jurkovic, M. J.

I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee, and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed-feedback lasers,” J. Appl. Phys.88(12), 6997–7005 (2000).
[CrossRef]

Kim, C. S.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express20(3), 3235–3240 (2012).
[CrossRef] [PubMed]

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR interband cascade lasers operating with <30 mW of input power,” Proc. SPIE8374, 83740H, 83740H-9 (2012).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun.2, 585 (2011).
[CrossRef] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1435–1444 (2011).
[CrossRef]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys.11(12), 125015 (2009).
[CrossRef]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol.26(3), 1160–1162 (2008).
[CrossRef]

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Kim, M.

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR interband cascade lasers operating with <30 mW of input power,” Proc. SPIE8374, 83740H, 83740H-9 (2012).
[CrossRef]

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express20(3), 3235–3240 (2012).
[CrossRef] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1435–1444 (2011).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun.2, 585 (2011).
[CrossRef] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys.11(12), 125015 (2009).
[CrossRef]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol.26(3), 1160–1162 (2008).
[CrossRef]

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Larrabee, D. C.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol.26(3), 1160–1162 (2008).
[CrossRef]

Lee, H.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee, and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed-feedback lasers,” J. Appl. Phys.88(12), 6997–7005 (2000).
[CrossRef]

Lindle, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1435–1444 (2011).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun.2, 585 (2011).
[CrossRef] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys.11(12), 125015 (2009).
[CrossRef]

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Manfra, M. J.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

Martinelli, R. U.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee, and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed-feedback lasers,” J. Appl. Phys.88(12), 6997–7005 (2000).
[CrossRef]

Merritt, C. D.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express20(3), 3235–3240 (2012).
[CrossRef] [PubMed]

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR interband cascade lasers operating with <30 mW of input power,” Proc. SPIE8374, 83740H, 83740H-9 (2012).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun.2, 585 (2011).
[CrossRef] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1435–1444 (2011).
[CrossRef]

Meyer, J. R.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express20(3), 3235–3240 (2012).
[CrossRef] [PubMed]

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR interband cascade lasers operating with <30 mW of input power,” Proc. SPIE8374, 83740H, 83740H-9 (2012).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun.2, 585 (2011).
[CrossRef] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1435–1444 (2011).
[CrossRef]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys.11(12), 125015 (2009).
[CrossRef]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol.26(3), 1160–1162 (2008).
[CrossRef]

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee, and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed-feedback lasers,” J. Appl. Phys.88(12), 6997–7005 (2000).
[CrossRef]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
[CrossRef]

Nolde, J. A.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol.26(3), 1160–1162 (2008).
[CrossRef]

Nosho, B. Z.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

Pino, R.

A. Chandola, R. Pino, and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb,” Semicond. Sci. Technol.20(8), 886–893 (2005).
[CrossRef]

Ram-Mohan, L. R.

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
[CrossRef]

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room-temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Y. Bai, S. R. Darvish, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Optimizing facet coating of quantum cascade lasers for low power consumption,” J. Appl. Phys.109(5), 053103 (2011).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett.97(25), 251104 (2010).
[CrossRef]

Selcuk, E.

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett.97(25), 251104 (2010).
[CrossRef]

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room-temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Y. Bai, S. R. Darvish, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Optimizing facet coating of quantum cascade lasers for low power consumption,” J. Appl. Phys.109(5), 053103 (2011).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett.97(25), 251104 (2010).
[CrossRef]

Song, D. W.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room-temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett.97(25), 251104 (2010).
[CrossRef]

Turner, G. W.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

Vurgaftman, I.

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR interband cascade lasers operating with <30 mW of input power,” Proc. SPIE8374, 83740H, 83740H-9 (2012).
[CrossRef]

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express20(3), 3235–3240 (2012).
[CrossRef] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1435–1444 (2011).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun.2, 585 (2011).
[CrossRef] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys.11(12), 125015 (2009).
[CrossRef]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol.26(3), 1160–1162 (2008).
[CrossRef]

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee, and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed-feedback lasers,” J. Appl. Phys.88(12), 6997–7005 (2000).
[CrossRef]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
[CrossRef]

Whitman, L. J.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

Yang, M. J.

I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee, and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed-feedback lasers,” J. Appl. Phys.88(12), 6997–7005 (2000).
[CrossRef]

Yang, M.-J.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

Yang, R. Q.

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
[CrossRef]

R. Q. Yang, “Infrared-laser based on intersubband transitions in quantum-wells,” Superlattices Microstruct.17(1), 77–83 (1995).
[CrossRef]

Appl. Phys. Lett.

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett.97(25), 251104 (2010).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room-temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Electron. Lett.

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
[CrossRef]

IEEE J. Quantum Electron.

J. Buus, “Analytical approximation for the reflectivity of DH lasers,” IEEE J. Quantum Electron.17(12), 2256–2257 (1981).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1435–1444 (2011).
[CrossRef]

J. Appl. Phys.

I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee, and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed-feedback lasers,” J. Appl. Phys.88(12), 6997–7005 (2000).
[CrossRef]

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys.92, 4994–4998 (2002).
[CrossRef]

Y. Bai, S. R. Darvish, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Optimizing facet coating of quantum cascade lasers for low power consumption,” J. Appl. Phys.109(5), 053103 (2011).
[CrossRef]

J. Vac. Sci. Technol.

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol.26(3), 1160–1162 (2008).
[CrossRef]

Nat. Commun.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun.2, 585 (2011).
[CrossRef] [PubMed]

New J. Phys.

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys.11(12), 125015 (2009).
[CrossRef]

Opt. Express

Proc. SPIE

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR interband cascade lasers operating with <30 mW of input power,” Proc. SPIE8374, 83740H, 83740H-9 (2012).
[CrossRef]

Semicond. Sci. Technol.

A. Chandola, R. Pino, and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb,” Semicond. Sci. Technol.20(8), 886–893 (2005).
[CrossRef]

Superlattices Microstruct.

R. Q. Yang, “Infrared-laser based on intersubband transitions in quantum-wells,” Superlattices Microstruct.17(1), 77–83 (1995).
[CrossRef]

Other

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, Jr., and C.-E. Zah, “Continuous wave operation of distributed feedback quantum cascade lasers with low threshold voltage and small divergent angle for CO2 isotope sensor,” in Proceetings of SPIE Photon. West (San Francisco, 21–26 January 2012).

B. Hinkov, A. Bismuto, and R. Terazzi, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Junction-up mounted, mid-infrared emitting, continuous-wave DB quantum cascade lasers with very low (< 900 mW) electrical dissipation at room temperature,” Conference on Lasers and Electro-Optics (San Jose, 6–11 May 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross-sectional scanning electron micrographs of a 15.7-μm-wide ridge with a straight sidewalls (left panel) and 25.1-μm-wide ridge a corrugated sidewalls (right panel).

Fig. 2
Fig. 2

Emission spectra in cw mode for the 7.7-μm-wide, 4-mm-long laser with HR/AR coated facets at a series of temperatures between T = 25°C and 115°C.

Fig. 3
Fig. 3

(a) Light-current-voltage characteristics in cw mode at T = 25°C for an epi-down-mounted 15.7 μm × 4 mm ridge with straight sidewalls, HR-coated back facet, and AR-coated front facet. (b) Normalized far-field pattern at three cw injection currents. The extracted effective M2 values are indicated.

Fig. 4
Fig. 4

(a) Light-current characteristics in cw mode at a series of temperatures for the 7.7 μm × 4 mm HR/AR ridge with straight sidewalls, mounted epi-side-down. (b) Normalized far-field pattern at three cw injection currents. The computed effective M2 values are indicated.

Fig. 5
Fig. 5

(a) Light-current characteristics in cw mode at a series of temperatures for an 18.2 μm × 4 mm HR/AR ridge with corrugated sidewalls, mounted epi-side down. (b) Normalized far-field pattern at three cw injection currents. The computed effective M2 values are indicated.

Fig. 6
Fig. 6

(a) RT light-current characteristics in cw mode for several HR/AR corrugated-sidewall ridges with 4 mm length and widths ranging from 13.2 to 25.2 μm. (b) Normalized far-field pattern at three different cw currents for the 25.2-μm-wide ridge at T = 25°C.

Fig. 7
Fig. 7

Light-current characteristics and the corresponding wall-plug efficiencies in cw mode for two 15.7-μm-wide ridges. The blue curves represent a 0.5-mm-long cavity with HR-coated back facet and uncoated front facet, while the red curves are for a 1-mm-long cavity with HR-coated back facet and AR-coated front facet. Reproduced from Ref. 13 with permission.

Tables (1)

Tables Icon

Table 1 Summary of RT cw maximum output powers, effective M2, and brightness values at the maximum power for the HR/AR-coated 4-mm-long ridges with straight and corrugated sidewalls.

Metrics