Abstract

We report on electro-optic modulation using a Lithium Niobate (LN) Photonic Crystal (PC) cavity structure. The compact device (6 μm in length) consists of a 2D photonic crystal cavity made on an Annealed Proton Exchange (APE) LN waveguide with vertical deposited electrodes. Experimental results show a tunability of 0.6 nm/V. This compact design opens a way towards micro and nano-scale tunable photonic devices with low driving electrical power.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
    [CrossRef] [PubMed]
  4. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
    [CrossRef]
  5. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
    [CrossRef]
  6. B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opals with electrically tunable photonic band gap,” Appl. Phys. Lett.83(23), 4704 (2003).
    [CrossRef]
  7. W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett.85(21), 4845 (2004).
    [CrossRef]
  8. H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett.16(6), 1528–1530 (2004).
    [CrossRef]
  9. M. T. Tinker and J.-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett.86(22), 221111 (2005).
    [CrossRef]
  10. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012).
    [CrossRef] [PubMed]
  11. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
    [CrossRef]
  12. G. Shambat, B. Ellis, M. A. Mayer, A. Majumdar, E. E. Haller, and J. Vučković, “Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator,” Opt. Express19(8), 7530–7536 (2011).
    [CrossRef] [PubMed]
  13. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15(6), 3140–3148 (2007).
    [CrossRef] [PubMed]
  14. N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys.44(30), 305101 (2011).
    [CrossRef]
  15. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express17(20), 17792–17800 (2009).
    [CrossRef] [PubMed]
  16. M. Roussey, M.-P. Bernal, and F. I. Baida, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B24(6), 1416–1422 (2007).
    [CrossRef]
  17. M. Paturzo, D. Alfieri, S. Grilli, P. Ferraro, P. De Natale, M. de Angelis, S. De Nicola, A. Fińizio, and G. Pierattini, “Investigation of electric internal field in congruent LiNbO3 by electro-optic effect,” Appl. Phys. Lett.85(23), 2875 (2004).
    [CrossRef]
  18. M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, M. Paturzo, L. Sansone, D. Alfieri, and P. De Natale, “Two-dimensional mapping of electro-optic phase retardation in lithium niobate crystals by digital holography,” Opt. Lett.30(13), 1671–1673 (2005).
    [CrossRef] [PubMed]
  19. M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, and A. Morbiato, “On the origin of internal field in Lithium Niobate crystals directly observed by digital holography,” Opt. Express13(14), 5416–5423 (2005).
    [CrossRef] [PubMed]
  20. G. W. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express16(9), 6302–6316 (2008).
    [CrossRef] [PubMed]
  21. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
    [CrossRef]
  22. D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett.90(17), 171116 (2007).
    [CrossRef]
  23. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater.31(7), 1054–1058 (2009).
    [CrossRef]
  24. F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express17(22), 20291–20300 (2009).
    [CrossRef] [PubMed]
  25. R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
    [CrossRef]

2012 (1)

2011 (2)

G. Shambat, B. Ellis, M. A. Mayer, A. Majumdar, E. E. Haller, and J. Vučković, “Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator,” Opt. Express19(8), 7530–7536 (2011).
[CrossRef] [PubMed]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys.44(30), 305101 (2011).
[CrossRef]

2010 (2)

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (3)

2006 (1)

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

2005 (3)

2004 (4)

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
[CrossRef] [PubMed]

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett.85(21), 4845 (2004).
[CrossRef]

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett.16(6), 1528–1530 (2004).
[CrossRef]

M. Paturzo, D. Alfieri, S. Grilli, P. Ferraro, P. De Natale, M. de Angelis, S. De Nicola, A. Fińizio, and G. Pierattini, “Investigation of electric internal field in congruent LiNbO3 by electro-optic effect,” Appl. Phys. Lett.85(23), 2875 (2004).
[CrossRef]

2003 (1)

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opals with electrically tunable photonic band gap,” Appl. Phys. Lett.83(23), 4704 (2003).
[CrossRef]

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Alfieri, D.

Asobe, M.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
[CrossRef]

Baida, F. I.

Bakhru, H.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett.90(17), 171116 (2007).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Bakhru, S.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett.90(17), 171116 (2007).
[CrossRef]

Benchabane, S.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Bernal, M.-P.

Burr, G. W.

Caccavale, F.

Callejo, D.

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Cerda-Pons, G.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett.90(17), 171116 (2007).
[CrossRef]

Chong, H. M. H.

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett.16(6), 1528–1530 (2004).
[CrossRef]

Collet, M.

Courjal, N.

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012).
[CrossRef] [PubMed]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys.44(30), 305101 (2011).
[CrossRef]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Dahdah, J.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

de Angelis, M.

De La Rue, R. M.

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett.16(6), 1528–1530 (2004).
[CrossRef]

De Natale, P.

De Nicola, S.

Diziain, S.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

G. W. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express16(9), 6302–6316 (2008).
[CrossRef] [PubMed]

Djukic, D.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett.90(17), 171116 (2007).
[CrossRef]

Ellis, B.

Etrich, C.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Ferraro, P.

Finizio, A.

Geiss, R.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Grilli, S.

Gruson, Y.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Guarino, A.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater.31(7), 1054–1058 (2009).
[CrossRef]

Guichardaz, B.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys.44(30), 305101 (2011).
[CrossRef]

Günter, P.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater.31(7), 1054–1058 (2009).
[CrossRef]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express17(22), 20291–20300 (2009).
[CrossRef] [PubMed]

Hajfler, J.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater.31(7), 1054–1058 (2009).
[CrossRef]

Haller, E. E.

Hänsch, T. W.

Hartung, H.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Hong, F.-L.

Iliew, R.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Janunts, N.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Joannopoulos, J. D.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
[CrossRef] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kley, E.-B.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Koechlin, M.

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express17(22), 20291–20300 (2009).
[CrossRef] [PubMed]

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater.31(7), 1054–1058 (2009).
[CrossRef]

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Laude, V.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Lederer, F.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Lee, J.-B.

M. T. Tinker and J.-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett.86(22), 221111 (2005).
[CrossRef]

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett.85(21), 4845 (2004).
[CrossRef]

Levy, M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Li, B.

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opals with electrically tunable photonic band gap,” Appl. Phys. Lett.83(23), 4704 (2003).
[CrossRef]

Li, L.

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opals with electrically tunable photonic band gap,” Appl. Phys. Lett.83(23), 4704 (2003).
[CrossRef]

Lipson, M.

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Liu, X. H.

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opals with electrically tunable photonic band gap,” Appl. Phys. Lett.83(23), 4704 (2003).
[CrossRef]

Lu, H.

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012).
[CrossRef] [PubMed]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys.44(30), 305101 (2011).
[CrossRef]

Majumdar, A.

Manipatruni, S.

Mayer, M. A.

Morbiato, A.

Nishida, Y.

Nishikawa, T.

Osgood, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett.90(17), 171116 (2007).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Ozawa, A.

Park, W.

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett.85(21), 4845 (2004).
[CrossRef]

Paturzo, M.

Pertsch, T.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Pierattini, G.

Poberaj, G.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater.31(7), 1054–1058 (2009).
[CrossRef]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express17(22), 20291–20300 (2009).
[CrossRef] [PubMed]

Rauch, J.-Y.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys.44(30), 305101 (2011).
[CrossRef]

Roth, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett.90(17), 171116 (2007).
[CrossRef]

Roussey, M.

M. Roussey, M.-P. Bernal, and F. I. Baida, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B24(6), 1416–1422 (2007).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

Sadani, B.

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012).
[CrossRef] [PubMed]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys.44(30), 305101 (2011).
[CrossRef]

Salut, R.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

Sansone, L.

Schmidt, B.

Schrempel, F.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Shakya, J.

Shambat, G.

Smith, N.

Soljacic, M.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
[CrossRef] [PubMed]

Stenger, V.

Sulser, F.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater.31(7), 1054–1058 (2009).
[CrossRef]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express17(22), 20291–20300 (2009).
[CrossRef] [PubMed]

Tinker, M. T.

M. T. Tinker and J.-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett.86(22), 221111 (2005).
[CrossRef]

Ulliac, G.

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012).
[CrossRef] [PubMed]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys.44(30), 305101 (2011).
[CrossRef]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Van Labeke, D.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

Vuckovic, J.

Wang, X. J.

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opals with electrically tunable photonic band gap,” Appl. Phys. Lett.83(23), 4704 (2003).
[CrossRef]

Xu, Q.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Zhou, J.

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opals with electrically tunable photonic band gap,” Appl. Phys. Lett.83(23), 4704 (2003).
[CrossRef]

Zi, J.

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opals with electrically tunable photonic band gap,” Appl. Phys. Lett.83(23), 4704 (2003).
[CrossRef]

Appl. Phys. Lett. (9)

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opals with electrically tunable photonic band gap,” Appl. Phys. Lett.83(23), 4704 (2003).
[CrossRef]

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett.85(21), 4845 (2004).
[CrossRef]

M. T. Tinker and J.-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett.86(22), 221111 (2005).
[CrossRef]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

M. Paturzo, D. Alfieri, S. Grilli, P. Ferraro, P. De Natale, M. de Angelis, S. De Nicola, A. Fińizio, and G. Pierattini, “Investigation of electric internal field in congruent LiNbO3 by electro-optic effect,” Appl. Phys. Lett.85(23), 2875 (2004).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett.90(17), 171116 (2007).
[CrossRef]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett.16(6), 1528–1530 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys.44(30), 305101 (2011).
[CrossRef]

Nat. Mater. (1)

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
[CrossRef]

Opt. Express (7)

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express17(20), 17792–17800 (2009).
[CrossRef] [PubMed]

G. Shambat, B. Ellis, M. A. Mayer, A. Majumdar, E. E. Haller, and J. Vučković, “Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator,” Opt. Express19(8), 7530–7536 (2011).
[CrossRef] [PubMed]

B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15(6), 3140–3148 (2007).
[CrossRef] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012).
[CrossRef] [PubMed]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express17(22), 20291–20300 (2009).
[CrossRef] [PubMed]

M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, and A. Morbiato, “On the origin of internal field in Lithium Niobate crystals directly observed by digital holography,” Opt. Express13(14), 5416–5423 (2005).
[CrossRef] [PubMed]

G. W. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express16(9), 6302–6316 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Mater. (1)

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater.31(7), 1054–1058 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the PC F-P cavity modulator.

Fig. 2
Fig. 2

Band structure of the PC FP cavity.

Fig. 3
Fig. 3

Normalized static electric field distribution inside and around the LN PC FP cavity structure.

Fig. 4
Fig. 4

Flow chart of the hybrid waveguide fabrication.

Fig. 5
Fig. 5

(a) Top view SEM image of hybrid waveguide, (b) optical mode characterization of the waveguide where white lines denote the ridge waveguide and (c) top view SEM image of the fabricated PC FP cavity structure.

Fig. 6
Fig. 6

Experimental setup for optical transmission (blue dashed path) as well as tunability and modulation performance (red solid path) characterizations. OSA indicates the optical spectrum analyzer and LF the lensed fiber.

Fig. 7
Fig. 7

Normalized transmission spectra of the PC cavity structure for three different applied voltage values (DC = 0 V, 10 V and 20 V) and the inset figure is the zoom of the cavity region.

Fig. 8
Fig. 8

Tunable performance of the device (a) wavelength shift as a function of applied voltage (b) transmission as a function of applied DC for a wavelength of 1546nm.

Fig. 9
Fig. 9

Difference between the output powers of the sidebands modulation signal and the laser (1546 nm) for electro-optical modulation response through the entire device. The inset figures illustrate the electro-optical modulation response showing the output powers of the laser (1546 nm) and the modulated sidebands signal at 1)160 MHz, 2)500 MHz, and 3)1000 MHz, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn= 1 2 n 3 r 33 f opt 2 f el V L

Metrics