Abstract

Volume holographic optical disc (VHOD) technology is simpler than the angular multiplexing holographic system. However, disc rotation usually causes pixel migration, thus reducing signal quality. This study proposes a special geometrical arrangement to counteract pixel migration. Using paraxial approximation analysis, an optimal geometrical distance ratio, K, is calculated to compensate for pixel migration and improve image quality during disc rotation. The results of approximation analysis are confirmed by both simulation and experimental results.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Digital Imaging and Communications in Medicine (DICOM), NEMA Standards Publications. http://medical.nema.org/ .
  2. K. D. Foord, “PACS workstation respecification: display, data flow, system integration, and environmental issues, derived from analysis of the Conquest Hospital pre-DICOM PACS experience,” Eur. Radiol.9(6), 1161–1169 (1999).
    [CrossRef] [PubMed]
  3. J. Bernarding, A. Thiel, and A. Grzesik, “A JAVA-based DICOM server with integration of clinical findings and DICOM-conform data encryption,” Int. J. Med. Inform.64(2-3), 429–438 (2001).
    [CrossRef] [PubMed]
  4. J. Fernàndez-Bayó, O. Barbero, C. Rubies, M. Sentís, and L. Donoso, “Distributing Medical Images with Internet Technologies: a DICOM Web Server and a DICOM Java Viewer,” Radiographics20(2), 581–590 (2000).
    [PubMed]
  5. R. N. J. Graham, R. W. Perriss, and A. F. Scarsbrook, “DICOM demystified: A review of digital file formats and their use in radiological practice,” Clin. Radiol.60(11), 1133–1140 (2005).
    [CrossRef] [PubMed]
  6. IBM, “Tape storage systems,” http://www-03.ibm.com/systems/storage/tape/ .
  7. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt.2(4), 393 (1963).
    [CrossRef]
  8. A. Pu and D. Psaltis, “Holographic data storage with 100 bits/μm2 density,” Optical Data Storage Topical Meeting Conference Digest, 48–49 (1997).
  9. G. W. Burr, C. M. Jefferson, H. Coufal, C. Gollasch, M. Jurich, J. A. Hoffnagle, R. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 100 Gbit/in2,” Conference on Lasers and Electro-Optics, 188–189 (2000).
  10. N. Butt, K. Mcstay, A. Cestero, H. Ho, W. Kong, S. Fang, R. Krishnan, B. Khan, A. Tessier, W. Davies, S. Lee, Y. Zhang, J. Johnson, S. Rombawa, R. Takalkar, A. Blauberg, K. V. Hawkins, J. Liu, S. Rosenblatt, P. Goyal, S. Gupta, J. Ervin, Z. Li, S. Galis, J. Barth, M. Yin, T. Weaver, J. H. Li, S. Narasimha, P. Parries, W. K. Henson, N. Robson, T. Kirihata, M. Chudzik, E. Maciejewski, P. Agnello, S. Stiffler, and S. S. Iyer, “A 0.039 μm2 High Performance eDRAM Cell based on 32nm High-K/Metal SOI Technology,” IEEE International Electron Devices Meeting, 27.5.1 – 27.5.4 (2010).
  11. L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE92(8), 1231–1280 (2004).
    [CrossRef]
  12. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett.18(12), 540–542 (1971).
    [CrossRef]
  13. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.20(2), 79–81 (1972).
    [CrossRef]
  14. D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett.25(3), 155–157 (1974).
    [CrossRef]
  15. D. Psaltis, K. Buse, and A. Adibi, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998).
    [CrossRef]
  16. F. Liu, Y. Kong, X. Ge, H. Liu, S. Liu, S. Chen, R. Rupp, and J. Xu, “Improved sensitivity of nonvolatile holographic storage in triply doped LiNbO3:Zr,Cu,Ce,” Opt. Express18(6), 6333–6339 (2010).
    [CrossRef] [PubMed]
  17. K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature357, 479–500 (1994).
  18. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
    [CrossRef] [PubMed]
  19. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
  20. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt.35(14), 2403–2417 (1996).
    [CrossRef] [PubMed]
  21. H. Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt.33(17), 3764–3774 (1994).
    [CrossRef] [PubMed]
  22. T. C. Teng, Y. W. Yu, and C. C. Sun, “Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs,” Opt. Express14(8), 3187–3192 (2006).
    [CrossRef] [PubMed]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2002).
  24. C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng.42(5), 1184–1185 (2003).
    [CrossRef]
  25. G. P. Nordin and P. Asthana, “Effects of cross talk on fidelity in page-oriented volume holographic optical data storage,” Opt. Lett.18(18), 1553–1555 (1993).
    [CrossRef] [PubMed]
  26. Members of the Technical Staff, Bell Laboratories, Transmission Systems for Communications (Bell Laboratories, Holmdel, N.J., 1971), Chap. 30, p. 726.
  27. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 382.

2010 (1)

2008 (1)

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

R. N. J. Graham, R. W. Perriss, and A. F. Scarsbrook, “DICOM demystified: A review of digital file formats and their use in radiological practice,” Clin. Radiol.60(11), 1133–1140 (2005).
[CrossRef] [PubMed]

2004 (1)

L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE92(8), 1231–1280 (2004).
[CrossRef]

2003 (1)

C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng.42(5), 1184–1185 (2003).
[CrossRef]

2001 (1)

J. Bernarding, A. Thiel, and A. Grzesik, “A JAVA-based DICOM server with integration of clinical findings and DICOM-conform data encryption,” Int. J. Med. Inform.64(2-3), 429–438 (2001).
[CrossRef] [PubMed]

2000 (1)

J. Fernàndez-Bayó, O. Barbero, C. Rubies, M. Sentís, and L. Donoso, “Distributing Medical Images with Internet Technologies: a DICOM Web Server and a DICOM Java Viewer,” Radiographics20(2), 581–590 (2000).
[PubMed]

1999 (1)

K. D. Foord, “PACS workstation respecification: display, data flow, system integration, and environmental issues, derived from analysis of the Conquest Hospital pre-DICOM PACS experience,” Eur. Radiol.9(6), 1161–1169 (1999).
[CrossRef] [PubMed]

1998 (1)

D. Psaltis, K. Buse, and A. Adibi, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998).
[CrossRef]

1996 (1)

1994 (2)

H. Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt.33(17), 3764–3774 (1994).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature357, 479–500 (1994).

1993 (1)

1974 (1)

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett.25(3), 155–157 (1974).
[CrossRef]

1972 (1)

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.20(2), 79–81 (1972).
[CrossRef]

1971 (1)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett.18(12), 540–542 (1971).
[CrossRef]

1963 (1)

Adibi, A.

D. Psaltis, K. Buse, and A. Adibi, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998).
[CrossRef]

Amodei, J. J.

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett.18(12), 540–542 (1971).
[CrossRef]

Asthana, P.

Barbastathis, G.

Barbero, O.

J. Fernàndez-Bayó, O. Barbero, C. Rubies, M. Sentís, and L. Donoso, “Distributing Medical Images with Internet Technologies: a DICOM Web Server and a DICOM Java Viewer,” Radiographics20(2), 581–590 (2000).
[PubMed]

Bashaw, M.

L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE92(8), 1231–1280 (2004).
[CrossRef]

Bernarding, J.

J. Bernarding, A. Thiel, and A. Grzesik, “A JAVA-based DICOM server with integration of clinical findings and DICOM-conform data encryption,” Int. J. Med. Inform.64(2-3), 429–438 (2001).
[CrossRef] [PubMed]

Bismuth, G.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.20(2), 79–81 (1972).
[CrossRef]

Blanche, P.-A.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Buse, K.

D. Psaltis, K. Buse, and A. Adibi, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998).
[CrossRef]

Chen, S.

Donoso, L.

J. Fernàndez-Bayó, O. Barbero, C. Rubies, M. Sentís, and L. Donoso, “Distributing Medical Images with Internet Technologies: a DICOM Web Server and a DICOM Java Viewer,” Radiographics20(2), 581–590 (2000).
[PubMed]

Fernàndez-Bayó, J.

J. Fernàndez-Bayó, O. Barbero, C. Rubies, M. Sentís, and L. Donoso, “Distributing Medical Images with Internet Technologies: a DICOM Web Server and a DICOM Java Viewer,” Radiographics20(2), 581–590 (2000).
[PubMed]

Flores, D.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Foord, K. D.

K. D. Foord, “PACS workstation respecification: display, data flow, system integration, and environmental issues, derived from analysis of the Conquest Hospital pre-DICOM PACS experience,” Eur. Radiol.9(6), 1161–1169 (1999).
[CrossRef] [PubMed]

Ge, X.

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett.25(3), 155–157 (1974).
[CrossRef]

Graham, R. N. J.

R. N. J. Graham, R. W. Perriss, and A. F. Scarsbrook, “DICOM demystified: A review of digital file formats and their use in radiological practice,” Clin. Radiol.60(11), 1133–1140 (2005).
[CrossRef] [PubMed]

Grzesik, A.

J. Bernarding, A. Thiel, and A. Grzesik, “A JAVA-based DICOM server with integration of clinical findings and DICOM-conform data encryption,” Int. J. Med. Inform.64(2-3), 429–438 (2001).
[CrossRef] [PubMed]

Gu, T.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Hesselink, L.

L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE92(8), 1231–1280 (2004).
[CrossRef]

Kippelen,

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature357, 479–500 (1994).

Kong, Y.

Levene, M.

Li, G.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Li, H. Y. S.

Lin, W.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Liu, F.

Liu, H.

Liu, S.

Meerholz, K.

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature357, 479–500 (1994).

Micheron, F.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.20(2), 79–81 (1972).
[CrossRef]

Nordin, G. P.

Norwood, R. A.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Orlov, S.

L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE92(8), 1231–1280 (2004).
[CrossRef]

Perriss, R. W.

R. N. J. Graham, R. W. Perriss, and A. F. Scarsbrook, “DICOM demystified: A review of digital file formats and their use in radiological practice,” Clin. Radiol.60(11), 1133–1140 (2005).
[CrossRef] [PubMed]

Peyghambarian, N.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature357, 479–500 (1994).

Psaltis, D.

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett.25(3), 155–157 (1974).
[CrossRef]

Rokutanda, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Rubies, C.

J. Fernàndez-Bayó, O. Barbero, C. Rubies, M. Sentís, and L. Donoso, “Distributing Medical Images with Internet Technologies: a DICOM Web Server and a DICOM Java Viewer,” Radiographics20(2), 581–590 (2000).
[PubMed]

Rupp, R.

Sandalphon, B.

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature357, 479–500 (1994).

Scarsbrook, A. F.

R. N. J. Graham, R. W. Perriss, and A. F. Scarsbrook, “DICOM demystified: A review of digital file formats and their use in radiological practice,” Clin. Radiol.60(11), 1133–1140 (2005).
[CrossRef] [PubMed]

Sentís, M.

J. Fernàndez-Bayó, O. Barbero, C. Rubies, M. Sentís, and L. Donoso, “Distributing Medical Images with Internet Technologies: a DICOM Web Server and a DICOM Java Viewer,” Radiographics20(2), 581–590 (2000).
[PubMed]

St Hilaire, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Staebler, D. L.

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett.18(12), 540–542 (1971).
[CrossRef]

Sun, C. C.

Tay, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Teng, T. C.

Thiel, A.

J. Bernarding, A. Thiel, and A. Grzesik, “A JAVA-based DICOM server with integration of clinical findings and DICOM-conform data encryption,” Int. J. Med. Inform.64(2-3), 429–438 (2001).
[CrossRef] [PubMed]

Thomas, J.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Tunç, A. V.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

van Heerden, P. J.

Volodin, B. L.

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature357, 479–500 (1994).

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett.25(3), 155–157 (1974).
[CrossRef]

Voorakaranam, R.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Wang, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Xu, J.

Yamamoto, M.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Yu, Y. W.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett.18(12), 540–542 (1971).
[CrossRef]

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.20(2), 79–81 (1972).
[CrossRef]

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett.25(3), 155–157 (1974).
[CrossRef]

Clin. Radiol. (1)

R. N. J. Graham, R. W. Perriss, and A. F. Scarsbrook, “DICOM demystified: A review of digital file formats and their use in radiological practice,” Clin. Radiol.60(11), 1133–1140 (2005).
[CrossRef] [PubMed]

Eur. Radiol. (1)

K. D. Foord, “PACS workstation respecification: display, data flow, system integration, and environmental issues, derived from analysis of the Conquest Hospital pre-DICOM PACS experience,” Eur. Radiol.9(6), 1161–1169 (1999).
[CrossRef] [PubMed]

Int. J. Med. Inform. (1)

J. Bernarding, A. Thiel, and A. Grzesik, “A JAVA-based DICOM server with integration of clinical findings and DICOM-conform data encryption,” Int. J. Med. Inform.64(2-3), 429–438 (2001).
[CrossRef] [PubMed]

Nature (3)

D. Psaltis, K. Buse, and A. Adibi, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998).
[CrossRef]

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature357, 479–500 (1994).

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Opt. Eng. (1)

C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng.42(5), 1184–1185 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. IEEE (1)

L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE92(8), 1231–1280 (2004).
[CrossRef]

Radiographics (1)

J. Fernàndez-Bayó, O. Barbero, C. Rubies, M. Sentís, and L. Donoso, “Distributing Medical Images with Internet Technologies: a DICOM Web Server and a DICOM Java Viewer,” Radiographics20(2), 581–590 (2000).
[PubMed]

Other (9)

IBM, “Tape storage systems,” http://www-03.ibm.com/systems/storage/tape/ .

A. Pu and D. Psaltis, “Holographic data storage with 100 bits/μm2 density,” Optical Data Storage Topical Meeting Conference Digest, 48–49 (1997).

G. W. Burr, C. M. Jefferson, H. Coufal, C. Gollasch, M. Jurich, J. A. Hoffnagle, R. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 100 Gbit/in2,” Conference on Lasers and Electro-Optics, 188–189 (2000).

N. Butt, K. Mcstay, A. Cestero, H. Ho, W. Kong, S. Fang, R. Krishnan, B. Khan, A. Tessier, W. Davies, S. Lee, Y. Zhang, J. Johnson, S. Rombawa, R. Takalkar, A. Blauberg, K. V. Hawkins, J. Liu, S. Rosenblatt, P. Goyal, S. Gupta, J. Ervin, Z. Li, S. Galis, J. Barth, M. Yin, T. Weaver, J. H. Li, S. Narasimha, P. Parries, W. K. Henson, N. Robson, T. Kirihata, M. Chudzik, E. Maciejewski, P. Agnello, S. Stiffler, and S. S. Iyer, “A 0.039 μm2 High Performance eDRAM Cell based on 32nm High-K/Metal SOI Technology,” IEEE International Electron Devices Meeting, 27.5.1 – 27.5.4 (2010).

Digital Imaging and Communications in Medicine (DICOM), NEMA Standards Publications. http://medical.nema.org/ .

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Members of the Technical Staff, Bell Laboratories, Transmission Systems for Communications (Bell Laboratories, Holmdel, N.J., 1971), Chap. 30, p. 726.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 382.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2002).

Supplementary Material (6)

» Media 1: MPG (1942 KB)     
» Media 2: MPG (896 KB)     
» Media 3: MPG (1210 KB)     
» Media 4: MPG (1234 KB)     
» Media 5: MPG (1282 KB)     
» Media 6: MPG (1286 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic outline of VHOD. (a) Writing process. (b) Reading process.

Fig. 2
Fig. 2

Contrast enhanced image captured by the CCD in the reading process (Media 1).

Fig. 3
Fig. 3

Schematic diagram of VHOD. (a) Writing process. (b) Reading process.

Fig. 4
Fig. 4

Diffracted signal captured by the CCD. (a) K = 2 (Media 2). (b) K = cos2θ(Media 3). both the SLM and the CCD is 14 × 14 μm2. Figure 4(a) (Media 2) and Fig. 4 (b) (Media 3) show the diffracting signal captured by the CCD when K = 2 and K = cos2θ, respectively. As expected, the diffracting signal in Fig. 4(a) (Media 2) shifts, but that in Fig. 4 (b) (Media 3) remains steady. Figure 4 (b) (Media 3) consequently shows greater image quality when the disc rotates. The SNRs were calculated according to the following formula:

Fig. 5
Fig. 5

SNR of diffracting signal depending on disc rotation.

Fig. 6
Fig. 6

The experimental setup.

Fig. 7
Fig. 7

Schematic diagram for position of effective light source.

Fig. 8
Fig. 8

Contrast enhanced image captured by the CCD in the reading process (Media4).

Fig. 9
Fig. 9

Accumulated signal with disc rotating from 0 rad to 10−3 rad. (a) K = 2 (Media 5). (b) K = cos2θ (Media 6).

Fig. 10
Fig. 10

SNR depending on disc rotation.

Fig. 11
Fig. 11

Schematic diagram for (a) K = cos2θ and (b) K = 2.

Fig. 12
Fig. 12

SNR depending on disc rotation forθs in different range. (a) 0°<θs<1.9°. (b) 1.9°<θs <3.7°. (c) 3.7°<θs<5.6°. (d) 5.6°<θs<7.4°. (e) 7.4°<θs<9.3°. (f) 9.3°<θs<11.1°. (g) 11.1°<θs <12.9°. (h) 12.9°<θs<14.6°. (i) 11.1°<θs <12.9°. (j) 12.9°<θs<14.6°.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

R m ( x m , y m , z m )= 1 r exp{ ik( x m 2 cos 2 θ+ z m 2 sin 2 θ x m z m sin2θ+ y m 2 2r +r ) },
r= r 0 + x m sinθ+ z m cosθ,
S m ( x m , y m , z m )= exp( ik( z 0 + z m ) ) iλ( z 0 + z m ) exp( iπ x m 2 + y m 2 λ( z 0 + z m ) ) S 0 ( x s , y s )exp( iπ x s 2 + y s 2 2 x s x m 2 y s y m λ( z 0 + z m ) ) d x s d y s .
G m = | R m | 2 + | S m | 2 + R m * S m + S m * R m ,
G m = S m * R m .
D m ( x m , y m , z m )=circ( x m 2 + y m 2 w ) R m * ( x m , y m , z m ) G m ( x m Δx, y m Δy, z m ) ,
D s ( x s , y s , z m )=exp( i π( x s 2 + y s 2 ) λ( z 0 + z m ) ) D m ( x s , y s , z m )exp( iπ x m 2 + y m 2 2 x s x m 2 y s y m λ( z 0 + z m ) )d x m d y m ,
r 0 >> x m sinθ.
r r 0 + z m cosθ.
D s ( x s , y s , z m )=F( S p PSFDelta ),
F( x s , y s , z m )=exp( iπ λ ( x s 2 + y s 2 Δ x 2 Δ y 2 z 0 + z m + Δ x 2 cos 2 θ+Δ y 2 +Δx z m sin2θ r 0 + z m cosθ 2Δxsinθ ) ),
S p ( x s , y s , z m )= S 0 * ( x s , y s )exp( iπ x s 2 + y s 2 +2Δx x s +2Δy y s λ( z 0 + z m ) ),
PSF( x s , y s , z m )= λ( z 0 + z m ) J 1 ( 2πw x s 2 + y s 2 λ( z 0 + z m ) ) πw x s 2 + y s 2 ,
Delta( x s , y s , z m )=δ( x s Δx( 1 ( z 0 + z m ) cos 2 θ r 0 + z m cosθ ), y s Δy( 1 ( z 0 + z m ) r 0 + z m cosθ ) ).
r 0 z 0 = cos 2 θ,
K= r 0 z 0 .
I CCD ( x s , y s )= | -T 2 T 2 D s ( x s , y s , z m ) d z m | 2 .
SNR=20log[ ( m 1 v th ) σ 1 ],
v th = σ 1 m 0 + σ 0 m 1 σ 1 + σ 0 ,
r air sin( 23.3 )= r disk sin( 15 ).

Metrics