Abstract

We experimentally validate a numerical model to study multimode erbium-doped fiber amplifiers (MM-EDFAs). Using this model, we demonstrate the improved performance achievable in a step index MM-EDFA incorporating a localized erbium doped ring and its potential for Space Division Multiplexed (SDM) transmission. Using a pure LP01 pump beam, which greatly simplifies amplifier construction, accurate modal gain control can be achieved by carefully tuning the thickness of the ring-doped layer in the active fiber and the pump power. In particular, by optimizing the erbium-ring-doped structure and the length of active fiber used, over 20dB gain for both LP01 and LP11 signals with a maximum gain difference of around 2 dB across the C band are predicted for a pure LP01 pump beam delivering 250mW power at 980nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Express19(17), 16680–16696 (2011).
    [CrossRef] [PubMed]
  2. S. Randel, R. Ryf, A. Gnauck, M. A. Mestre, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.5.
  3. M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, and G. Charlet, “Mode-division multiplexing of 2 × 100 Gb/s channels using an LCOS-based spatial modulator,” J. Lightwave Technol.30(4), 618–623 (2012).
    [CrossRef]
  4. L. Gruner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, R. Lingle, and B. Palsdottir, “Few mode transmission fiber with low DGD, low mode coupling and low loss,” in National Fiber Optic Engineers Conference, OSA Technical Digest(Optical Society of America, 2012), paper PDP5A.1.
  5. R. Ryf, A. Sierra, R. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode Fiber,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD), paper Th.13.K.5.
  6. N. Bai, E. Ip, Y. K. Huang, E. Mateo, F. Yaman, M. J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H. Y. Tam, C. Lu, Y. Luo, G. D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express20(3), 2668–2680 (2012).
    [CrossRef] [PubMed]
  7. E. Ip, N. Bai, Y. Huang, E. Mateo, F. Yaman, M. Li, S. Bickham, S. Ten, Y. Luo, G. Peng, G. Li, T. Wang, J. Linares, C. Montero, and V. Moreno, “6x6 MIMO transmission over 50+25+10 km heterogeneous spans of few-mode fiber with inline erbium-doped fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu2C.4.
  8. Y. Yung, S. Alam, Z. Li, A. Dhar, D. Giles, I. Giles, J. Sahu, L. Grüner-Nielsen, F. Poletti, and D. Richardson, “First demonstration of multimode amplifier for spatial division multiplexed transmission systems,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.K.4.
  9. Y. Jung, S. Alam, Z. Li, A. Dhar, D. Giles, I. P. Giles, J. K. Sahu, F. Poletti, L. Grüner-Nielsen, and D. J. Richardson, “First demonstration and detailed characterization of a multimode amplifier for space division multiplexed transmission systems,” Opt. Express19(26), B952–B957 (2011).
    [CrossRef] [PubMed]
  10. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett.23(5), 355–357 (1998).
    [CrossRef] [PubMed]
  11. R. S. Quimby, T. F. Morse, R. L. Shubochkin, and S. Ramachandran, “Yb3+ ring doping in high-order-mode fiber for high-power 977-nm lasers and amplifiers,” IEEE J. Quantum Electron.15(1), 12–19 (2009).
    [CrossRef]
  12. D. Gloge, “Weakly guiding fibers,” Appl. Opt.10(10), 2252–2258 (1971).
    [CrossRef] [PubMed]
  13. A. W. Snyder and W. R. Young, “Modes of optical waveguides,” J. Opt. Soc. Am.68(3), 297–309 (1978).
    [CrossRef]
  14. N. Bai, E. Ip, T. Wang, and G. Li, “Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump,” Opt. Express19(17), 16601–16611 (2011).
    [CrossRef] [PubMed]
  15. Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B25(2), 247–254 (2008).
    [CrossRef]
  16. K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech.29(4), 348–352 (1981).
    [CrossRef]
  17. W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron.27(4), 1004–1010 (1991).
    [CrossRef]
  18. E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol.8(11), 1730–1741 (1990).
    [CrossRef]
  19. K. J. Garcia, “Calculating component coupling coefficients,” WDM Solutions, Laser Focus World (2000).

2012 (2)

2011 (3)

2009 (1)

R. S. Quimby, T. F. Morse, R. L. Shubochkin, and S. Ramachandran, “Yb3+ ring doping in high-order-mode fiber for high-power 977-nm lasers and amplifiers,” IEEE J. Quantum Electron.15(1), 12–19 (2009).
[CrossRef]

2008 (1)

1998 (1)

1991 (1)

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron.27(4), 1004–1010 (1991).
[CrossRef]

1990 (1)

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol.8(11), 1730–1741 (1990).
[CrossRef]

1981 (1)

K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech.29(4), 348–352 (1981).
[CrossRef]

1978 (1)

1971 (1)

Alam, S.

Astruc, M.

Bai, N.

Barnes, W. L.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron.27(4), 1004–1010 (1991).
[CrossRef]

Bickham, S.

Bigo, S.

Boutin, A.

Brindel, P.

Charlet, G.

Desurvire, E.

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol.8(11), 1730–1741 (1990).
[CrossRef]

Dhar, A.

Foschini, G. J.

Giles, C. R.

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol.8(11), 1730–1741 (1990).
[CrossRef]

Giles, D.

Giles, I. P.

Gloge, D.

Grüner-Nielsen, L.

Hanna, D. C.

Huang, Y. K.

Ip, E.

Jiang, Z.

Jung, Y.

Koebele, C.

Laming, R. I.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron.27(4), 1004–1010 (1991).
[CrossRef]

Lau, A. P. T.

Li, G.

Li, M. J.

Li, Z.

Liñares, J.

Lu, C.

Luo, Y.

Man Chung, K.

Marciante, J. R.

Mardoyan, H.

Mateo, E.

Minelly, J. D.

Montero, C.

Moreno, V.

Morishita, K.

K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech.29(4), 348–352 (1981).
[CrossRef]

Morkel, P. R.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron.27(4), 1004–1010 (1991).
[CrossRef]

Morse, T. F.

R. S. Quimby, T. F. Morse, R. L. Shubochkin, and S. Ramachandran, “Yb3+ ring doping in high-order-mode fiber for high-power 977-nm lasers and amplifiers,” IEEE J. Quantum Electron.15(1), 12–19 (2009).
[CrossRef]

Nilsson, J.

Paschotta, R.

Peng, G. D.

Poletti, F.

Prieto, X.

Provost, L.

Quimby, R. S.

R. S. Quimby, T. F. Morse, R. L. Shubochkin, and S. Ramachandran, “Yb3+ ring doping in high-order-mode fiber for high-power 977-nm lasers and amplifiers,” IEEE J. Quantum Electron.15(1), 12–19 (2009).
[CrossRef]

Ramachandran, S.

R. S. Quimby, T. F. Morse, R. L. Shubochkin, and S. Ramachandran, “Yb3+ ring doping in high-order-mode fiber for high-power 977-nm lasers and amplifiers,” IEEE J. Quantum Electron.15(1), 12–19 (2009).
[CrossRef]

Richardson, D. J.

Sahu, J. K.

Salsi, M.

Shubochkin, R. L.

R. S. Quimby, T. F. Morse, R. L. Shubochkin, and S. Ramachandran, “Yb3+ ring doping in high-order-mode fiber for high-power 977-nm lasers and amplifiers,” IEEE J. Quantum Electron.15(1), 12–19 (2009).
[CrossRef]

Sillard, P.

Snyder, A. W.

Sperti, D.

Tam, H. Y.

Tarbox, E. J.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron.27(4), 1004–1010 (1991).
[CrossRef]

Ten, S.

Tran, P.

Tropper, A. C.

Tse, V.

Verluise, F.

Wang, T.

Winzer, P. J.

Yaman, F.

Young, W. R.

Zyskind, J. L.

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol.8(11), 1730–1741 (1990).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

R. S. Quimby, T. F. Morse, R. L. Shubochkin, and S. Ramachandran, “Yb3+ ring doping in high-order-mode fiber for high-power 977-nm lasers and amplifiers,” IEEE J. Quantum Electron.15(1), 12–19 (2009).
[CrossRef]

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron.27(4), 1004–1010 (1991).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech.29(4), 348–352 (1981).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (1)

Other (6)

K. J. Garcia, “Calculating component coupling coefficients,” WDM Solutions, Laser Focus World (2000).

S. Randel, R. Ryf, A. Gnauck, M. A. Mestre, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.5.

L. Gruner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, R. Lingle, and B. Palsdottir, “Few mode transmission fiber with low DGD, low mode coupling and low loss,” in National Fiber Optic Engineers Conference, OSA Technical Digest(Optical Society of America, 2012), paper PDP5A.1.

R. Ryf, A. Sierra, R. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode Fiber,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD), paper Th.13.K.5.

E. Ip, N. Bai, Y. Huang, E. Mateo, F. Yaman, M. Li, S. Bickham, S. Ten, Y. Luo, G. Peng, G. Li, T. Wang, J. Linares, C. Montero, and V. Moreno, “6x6 MIMO transmission over 50+25+10 km heterogeneous spans of few-mode fiber with inline erbium-doped fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu2C.4.

Y. Yung, S. Alam, Z. Li, A. Dhar, D. Giles, I. Giles, J. Sahu, L. Grüner-Nielsen, F. Poletti, and D. Richardson, “First demonstration of multimode amplifier for spatial division multiplexed transmission systems,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.K.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of an MM-EDFA; DM: Dichroic mirror.

Fig. 2
Fig. 2

(a) The FRIP/dopant profile (shaded region) of Fiber 1 and supported signal modes. (b) DMG versus input signal power pumped by LP01p and LP21p for both Fiber 1 (shown as “F1”) and step index EDF (shown as “SI”).

Fig. 3
Fig. 3

Gain for LP01 and LP11a modes versus input signal power under (a) central pump launch condition and (b) offset launch condition. The points represent experimental measurements; the lines show theoretical predictions.

Fig. 4
Fig. 4

(a) The FRIP of Fiber 1, and (b) the evolution of LP01s and (c) LP11s mode intensity distribution in Fiber 1 and modified FRIPs with ND varying from 0.3 to 1.0. The dashed lines in (b) and (c) indicate radial position of 9µm (−9µm) in the fiber.

Fig. 5
Fig. 5

Contour map for differential gain between LP01s and LP11s [units of dB]. The X-axis is the normalized depth of the FRIP based on Fiber 1 (shown in Fig. 4a) and the Y-axis is the pump power ratio between LP21p and LP01p.The vertical dashed lines represent the calculated signal coupling efficiencies for the LP01s corresponding to the ND.

Fig. 6
Fig. 6

Fiber 2 with ringed doped profile (shaded region) and supported signal modes; a, core radius; t, thickness of the doped region.

Fig. 7
Fig. 7

(a) Differential gain between LP01s and LP11s (at 1530nm) versus input signal power for different t/a ratios. (b) Modal gain against LP01p pump power for LP01s and LP11s at 1530nm based on Fiber 2 with a ratio of t/a = 0.52

Fig. 8
Fig. 8

(a) Modal gain evolution of LP01s and LP11s along the fiber position for two different wavelengths (1530nm and 1550nm), using t/a = 0.52, PLP01p = 250mW. (b) Modal gain dependence on wavelength. PLP01p = 250mW.

Tables (1)

Tables Icon

Table 1 Signal Coupling Efficiencies Associated with the Modification of ND in Fiber 1

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d n 2 (r,ϕ,z) dt = k P k (z) i k (r,ϕ) σ ak h v k n 1 (r,ϕ,z) k P k (z) i k (r,ϕ) σ ek h v k n 2 (r,ϕ,z) n 2 (r,ϕ,z) τ
N t (r,ϕ,z)= n 1 (r,ϕ,z)+ n 2 (r,ϕ,z)
d P k (z) dz = u k σ ek [ P k (z)+2h ν k Δ ν k ] 0 2π 0 a i k (r,ϕ) n 2 (r,ϕ,z)rdrdϕ u k σ ak P k (z) 0 2π 0 a i k (r,ϕ) n 1 (r,ϕ,z)rdrdϕ u k α P k (z)
n 2 (r,ϕ,z)= N t (r,ϕ,z) k σ ak τ h ν k i k (r,ϕ) P k (z) k ( σ ak + σ ek )τ h ν k i k (r,ϕ) P k (z)+1
η= | 0 2π 0 ψ in (r,ϕ) ψ i * (r,ϕ) rdrdϕ | 2 0 2π 0 ψ in (r,ϕ) ψ in * (r,ϕ) rdrdϕ 0 2π 0 ψ i (r,ϕ) ψ i * (r,ϕ) rdrdϕ

Metrics