Abstract

This study shows the results of a photonic band-edge laser using dye-doped cholesteric liquid crystals (CLCs) combined with silver (Ag) nanoparticles. When the Ag nanoparticle surface plasmon resonance wavelength matched the excitation source wavelength, the large optical fields provided by surface plasmons increased the fluorescence of dye molecules by enhancing the molecular excitation rate, achieving a low lasing threshold and high pumping efficiency.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett.23(21), 1707–1709 (1998).
    [CrossRef] [PubMed]
  2. Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett.90(9), 091114 (2007).
    [CrossRef]
  3. S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(6), 061709 (2006).
    [CrossRef] [PubMed]
  4. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys.97(2), 023103 (2005).
    [CrossRef]
  5. C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys.107(4), 043101 (2010).
    [CrossRef]
  6. Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett.87(23), 231107 (2005).
    [CrossRef]
  7. Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express14(9), 3906–3916 (2006).
    [CrossRef] [PubMed]
  8. K. Amemiya, T. Nagata, M. H. Song, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Enhancement of laser emission intensity in dye-doped cholesteric liquid crystals with single-output window,” Jpn. J. Appl. Phys.44(6A), 3748–3750 (2005).
    [CrossRef]
  9. C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett.97(25), 251109 (2010).
    [CrossRef]
  10. S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of RHO6G dye using silver nanoparticles,” Bull. Mater. Sci.31(3), 541–544 (2008).
    [CrossRef]
  11. D. Ancukiewicz, NNIN REU Research Accomplishments (National Nanotechnology Infrastructure Network, 2008).
  12. R.-Y. He, G.-L. Chang, H.-L. Wu, C.-H. Lin, K.-C. Chiu, Y.-D. Su, and S.-J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express14(20), 9307–9316 (2006).
    [CrossRef] [PubMed]
  13. J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286(5), 875–879 (2001).
    [CrossRef] [PubMed]
  14. A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett.95(2), 023117 (2009).
    [CrossRef]
  15. S.-H. Chen and J.-Y. Jhong, “Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode,” Opt. Express19(18), 16843–16850 (2011).
    [CrossRef] [PubMed]
  16. O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Polym. Adv. Technol.18(9), 751–755 (2007).
    [CrossRef]
  17. T. Nakamura, T. Hosaka, and S. Adachi, “Gold-nanoparticle-assisted random lasing from powdered GaN,” Opt. Express19(2), 467–475 (2011).
    [CrossRef] [PubMed]
  18. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  19. T. Härtling, P. Reichenbach, and L. M. Eng, “Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle,” Opt. Express15(20), 12806–12817 (2007).
    [CrossRef] [PubMed]

2011 (2)

2010 (2)

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys.107(4), 043101 (2010).
[CrossRef]

C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett.97(25), 251109 (2010).
[CrossRef]

2009 (1)

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett.95(2), 023117 (2009).
[CrossRef]

2008 (1)

S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of RHO6G dye using silver nanoparticles,” Bull. Mater. Sci.31(3), 541–544 (2008).
[CrossRef]

2007 (3)

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett.90(9), 091114 (2007).
[CrossRef]

O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Polym. Adv. Technol.18(9), 751–755 (2007).
[CrossRef]

T. Härtling, P. Reichenbach, and L. M. Eng, “Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle,” Opt. Express15(20), 12806–12817 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (3)

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys.97(2), 023103 (2005).
[CrossRef]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett.87(23), 231107 (2005).
[CrossRef]

K. Amemiya, T. Nagata, M. H. Song, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Enhancement of laser emission intensity in dye-doped cholesteric liquid crystals with single-output window,” Jpn. J. Appl. Phys.44(6A), 3748–3750 (2005).
[CrossRef]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

2001 (1)

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286(5), 875–879 (2001).
[CrossRef] [PubMed]

1998 (1)

Adachi, S.

Amemiya, K.

K. Amemiya, T. Nagata, M. H. Song, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Enhancement of laser emission intensity in dye-doped cholesteric liquid crystals with single-output window,” Jpn. J. Appl. Phys.44(6A), 3748–3750 (2005).
[CrossRef]

Bass, M.

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett.87(23), 231107 (2005).
[CrossRef]

Biradar, A. M.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett.95(2), 023117 (2009).
[CrossRef]

Chang, G.-L.

Chen, S.-H.

Chen, S.-J.

Chiu, K.-C.

Coles, H. J.

C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett.97(25), 251109 (2010).
[CrossRef]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys.107(4), 043101 (2010).
[CrossRef]

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(6), 061709 (2006).
[CrossRef] [PubMed]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys.97(2), 023103 (2005).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

D’Auria, S.

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286(5), 875–879 (2001).
[CrossRef] [PubMed]

Davidov, D.

O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Polym. Adv. Technol.18(9), 751–755 (2007).
[CrossRef]

Deshpande, A. C.

S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of RHO6G dye using silver nanoparticles,” Bull. Mater. Sci.31(3), 541–544 (2008).
[CrossRef]

Eng, L. M.

Fan, B.

Ford, A. D.

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(6), 061709 (2006).
[CrossRef] [PubMed]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys.97(2), 023103 (2005).
[CrossRef]

Friend, R. H.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys.107(4), 043101 (2010).
[CrossRef]

Fujii, A.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett.90(9), 091114 (2007).
[CrossRef]

Genack, A. Z.

Gryczynski, I.

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286(5), 875–879 (2001).
[CrossRef] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286(5), 875–879 (2001).
[CrossRef] [PubMed]

Haase, W.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett.95(2), 023117 (2009).
[CrossRef]

Hadeler, O.

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(6), 061709 (2006).
[CrossRef] [PubMed]

Härtling, T.

He, R.-Y.

Hosaka, T.

Huang, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett.90(9), 091114 (2007).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express14(9), 3906–3916 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett.87(23), 231107 (2005).
[CrossRef]

Ishikawa, K.

K. Amemiya, T. Nagata, M. H. Song, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Enhancement of laser emission intensity in dye-doped cholesteric liquid crystals with single-output window,” Jpn. J. Appl. Phys.44(6A), 3748–3750 (2005).
[CrossRef]

Jhong, J.-Y.

Kalele, S.

S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of RHO6G dye using silver nanoparticles,” Bull. Mater. Sci.31(3), 541–544 (2008).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Kopp, V. I.

Kulkarni, S. K.

S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of RHO6G dye using silver nanoparticles,” Bull. Mater. Sci.31(3), 541–544 (2008).
[CrossRef]

Kumar, A.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett.95(2), 023117 (2009).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286(5), 875–879 (2001).
[CrossRef] [PubMed]

Lin, C.-H.

Matsuhisa, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett.90(9), 091114 (2007).
[CrossRef]

Mehta, D. S.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett.95(2), 023117 (2009).
[CrossRef]

Morris, S. M.

C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett.97(25), 251109 (2010).
[CrossRef]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys.107(4), 043101 (2010).
[CrossRef]

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(6), 061709 (2006).
[CrossRef] [PubMed]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys.97(2), 023103 (2005).
[CrossRef]

Mowatt, C.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys.107(4), 043101 (2010).
[CrossRef]

C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett.97(25), 251109 (2010).
[CrossRef]

Nagata, T.

K. Amemiya, T. Nagata, M. H. Song, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Enhancement of laser emission intensity in dye-doped cholesteric liquid crystals with single-output window,” Jpn. J. Appl. Phys.44(6A), 3748–3750 (2005).
[CrossRef]

Nakamura, T.

Nishimura, S.

K. Amemiya, T. Nagata, M. H. Song, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Enhancement of laser emission intensity in dye-doped cholesteric liquid crystals with single-output window,” Jpn. J. Appl. Phys.44(6A), 3748–3750 (2005).
[CrossRef]

Ozaki, M.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett.90(9), 091114 (2007).
[CrossRef]

Ozaki, R.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett.90(9), 091114 (2007).
[CrossRef]

Pivnenko, M. N.

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(6), 061709 (2006).
[CrossRef] [PubMed]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys.97(2), 023103 (2005).
[CrossRef]

Popov, O.

O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Polym. Adv. Technol.18(9), 751–755 (2007).
[CrossRef]

Prakash, J.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett.95(2), 023117 (2009).
[CrossRef]

Rapaport, A.

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett.87(23), 231107 (2005).
[CrossRef]

Reichenbach, P.

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Shen, B.

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286(5), 875–879 (2001).
[CrossRef] [PubMed]

Singh, S. B.

S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of RHO6G dye using silver nanoparticles,” Bull. Mater. Sci.31(3), 541–544 (2008).
[CrossRef]

Song, M. H.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys.107(4), 043101 (2010).
[CrossRef]

K. Amemiya, T. Nagata, M. H. Song, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Enhancement of laser emission intensity in dye-doped cholesteric liquid crystals with single-output window,” Jpn. J. Appl. Phys.44(6A), 3748–3750 (2005).
[CrossRef]

Su, Y.-D.

Takanishi, Y.

K. Amemiya, T. Nagata, M. H. Song, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Enhancement of laser emission intensity in dye-doped cholesteric liquid crystals with single-output window,” Jpn. J. Appl. Phys.44(6A), 3748–3750 (2005).
[CrossRef]

Takao, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett.90(9), 091114 (2007).
[CrossRef]

Takezoe, H.

K. Amemiya, T. Nagata, M. H. Song, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Enhancement of laser emission intensity in dye-doped cholesteric liquid crystals with single-output window,” Jpn. J. Appl. Phys.44(6A), 3748–3750 (2005).
[CrossRef]

Toyooka, T.

K. Amemiya, T. Nagata, M. H. Song, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Enhancement of laser emission intensity in dye-doped cholesteric liquid crystals with single-output window,” Jpn. J. Appl. Phys.44(6A), 3748–3750 (2005).
[CrossRef]

Vithana, H. K. M.

Wilkinson, T. D.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys.107(4), 043101 (2010).
[CrossRef]

C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett.97(25), 251109 (2010).
[CrossRef]

Wu, H.-L.

Wu, S. T.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett.90(9), 091114 (2007).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express14(9), 3906–3916 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett.87(23), 231107 (2005).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Zhou, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett.90(9), 091114 (2007).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express14(9), 3906–3916 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett.87(23), 231107 (2005).
[CrossRef]

Zilbershtein, A.

O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Polym. Adv. Technol.18(9), 751–755 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett.90(9), 091114 (2007).
[CrossRef]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett.87(23), 231107 (2005).
[CrossRef]

C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett.97(25), 251109 (2010).
[CrossRef]

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett.95(2), 023117 (2009).
[CrossRef]

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286(5), 875–879 (2001).
[CrossRef] [PubMed]

Bull. Mater. Sci. (1)

S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of RHO6G dye using silver nanoparticles,” Bull. Mater. Sci.31(3), 541–544 (2008).
[CrossRef]

J. Appl. Phys. (2)

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys.97(2), 023103 (2005).
[CrossRef]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys.107(4), 043101 (2010).
[CrossRef]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Amemiya, T. Nagata, M. H. Song, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Enhancement of laser emission intensity in dye-doped cholesteric liquid crystals with single-output window,” Jpn. J. Appl. Phys.44(6A), 3748–3750 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(6), 061709 (2006).
[CrossRef] [PubMed]

Polym. Adv. Technol. (1)

O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Polym. Adv. Technol.18(9), 751–755 (2007).
[CrossRef]

Other (1)

D. Ancukiewicz, NNIN REU Research Accomplishments (National Nanotechnology Infrastructure Network, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the sample structure (a) with Ag particles and (b) without Ag particles.

Fig. 2
Fig. 2

SEM images of annealed Ag nanoparticles on substrates A, B, C, and D.

Fig. 3
Fig. 3

Histograms of the particle size distribution of Substrates A, B, C, and D.

Fig. 4
Fig. 4

(a) Absorption spectra and (b) appearance photographs of Substrates A, B, C, and D.

Fig. 5
Fig. 5

Absorption spectra of the dye-doped CLC Samples A, B, C, and D, with Ag nanoparticles, and the conventional Sample E.

Fig. 6
Fig. 6

Fluorescence spectra of the dye-doped CLC Samples A, B, C, and D, with Ag nanoparticles, and the conventional Sample E pumped by a 532 nm continuous light.

Fig. 7
Fig. 7

The output lasing intensity of the dye-doped CLC samples as a function of the pumping energy from the Nd:YAG pulsed laser at a 532 nm wavelength.

Fig. 8
Fig. 8

The lasing photographs of the dye-doped CLC Sample B with Ag nanoparticles and the conventional Sample E at the pumping energy of 4 μJ/pulse.

Fig. 9
Fig. 9

Lasing spectra from Samples B and E.

Tables (2)

Tables Icon

Table 1 Four Substrates at Different Annealing Temperatures for Nanoparticle Formation

Tables Icon

Table 2 Average Diameter and Density of Particles on Substrates A, B, C, and D

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ em =q γ exc q | E exc p mol | 2 ,

Metrics