Abstract

We report a subwavelength grating (SWG) coupler for coupling light efficiently into in-plane semiconductor nanomembrane photonic devices for the first time. The SWG coupler consists of a periodic array of rectangular trenches fabricated on a silicon nanomembrane (SiNM) transferred onto a glass substrate. At a wavelength of 1555.56 nm, the coupling efficiency of the fabricated 10 µm wide, 17.1 µm long SWG is 39.17% (−4.07 dB), with 1 dB and 3 dB bandwidths of 29 nm and 57 nm, respectively. Peak efficiency varies by 0.26 dB when measuring 5 fabricated grating pairs. Coupling efficiency can further be improved with an improved SiNM transfer process. Such high efficiency couplers allow for the successful realization of a plethora of hybrid photonic devices utilizing nanomembrane technology.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett.84(26), 5398–5400 (2004).
    [CrossRef]
  2. E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett.86(9), 093507 (2005).
    [CrossRef]
  3. F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter6(3), 439–455 (2010).
    [CrossRef]
  4. M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, “Elastically relaxed free-standing strained-silicon nanomembranes,” Nat. Mater.5(5), 388–393 (2006).
    [CrossRef] [PubMed]
  5. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
    [CrossRef] [PubMed]
  6. M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006).
    [CrossRef]
  7. J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011).
    [CrossRef] [PubMed]
  8. Y. Yang, Y. Hwang, H. A. Cho, J. H. Song, S. J. Park, J. A. Rogers, and H. C. Ko, “Arrays of Silicon Micro/Nanostructures Formed in Suspended Configurations for Deterministic Assembly Using Flat and Roller-Type Stamps,” Small7(4), 484–491 (2011).
    [CrossRef] [PubMed]
  9. J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo, and J. A. Rogers, “High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Lett.27(6), 460–462 (2006).
    [CrossRef]
  10. D.-H. Kim, J.-H. Ahn, H.-S. Kim, K. J. Lee, T.-H. Kim, C.-J. Yu, R. G. Nuzzo, and J. A. Rogers, “Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” IEEE Electron Device Lett.29(1), 73–76 (2008).
    [CrossRef]
  11. H. Pang, H.-C. Yuan, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible Microwave Single-Crystal Si TFTs with fmax of 5.5 GHz,” Device Research Conference 2007 65th Annual, 15–16 (2007).
  12. L. Sun, G. Qin, J.-H. Seo, G. K. Celler, W. Zhou, and Z. Ma, “12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics,” Small6(22), 2553–2557 (2010).
    [CrossRef] [PubMed]
  13. G. Qin, H.-C. Yuan, G. K. Celler, W. Zhou, J. Ma, and Z. Ma, “RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate,” Microelectron. J.42(3), 509–514 (2011).
    [CrossRef]
  14. X. Xu, H. Subbaraman, A. Hosseini, C.-Y. Lin, D. Kwong, and R. T. Chen, “Stamp Printing of Silicon-Nanomembrane-Based Photonic Devices onto Flexible Substrates with a Suspended Configuration,” Opt. Lett.37(6), 1020–1022 (2012).
    [CrossRef] [PubMed]
  15. Z. Y. Dang, M. Motapothula, Y. S. Ow, T. Venkatesan, M. B. H. Breese, M. A. Rana, and A. Osman, “Fabrication of large-area ultra-thin single crystal silicon membranes,” Appl. Phys. Lett.99(22), 223105 (2011).
    [CrossRef]
  16. W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
    [CrossRef]
  17. G. X. Qin, H. C. Yuan, G. K. Celler, W. D. Zhou, and Z. Q. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys.42(23), 234006 (2009).
    [CrossRef]
  18. M. J. Zablocki, A. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane transfer process for intricate photonic device applications,” Opt. Lett.36(1), 58–60 (2011).
    [CrossRef] [PubMed]
  19. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  20. R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett.34(9), 1408–1410 (2009).
    [CrossRef] [PubMed]
  21. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
    [CrossRef] [PubMed]
  22. C. Xia and H. K. Tsang, “Nanoholes Grating Couplers for Coupling Between Silicon-on-Insulator Waveguides and Optical Fibers,” IEEE Photon. J.1(3), 184–190 (2009).
    [CrossRef]
  23. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am.67(4), 423 (1977).
    [CrossRef]
  24. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001).
    [CrossRef]

2012

2011

M. J. Zablocki, A. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane transfer process for intricate photonic device applications,” Opt. Lett.36(1), 58–60 (2011).
[CrossRef] [PubMed]

J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011).
[CrossRef] [PubMed]

Y. Yang, Y. Hwang, H. A. Cho, J. H. Song, S. J. Park, J. A. Rogers, and H. C. Ko, “Arrays of Silicon Micro/Nanostructures Formed in Suspended Configurations for Deterministic Assembly Using Flat and Roller-Type Stamps,” Small7(4), 484–491 (2011).
[CrossRef] [PubMed]

G. Qin, H.-C. Yuan, G. K. Celler, W. Zhou, J. Ma, and Z. Ma, “RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate,” Microelectron. J.42(3), 509–514 (2011).
[CrossRef]

Z. Y. Dang, M. Motapothula, Y. S. Ow, T. Venkatesan, M. B. H. Breese, M. A. Rana, and A. Osman, “Fabrication of large-area ultra-thin single crystal silicon membranes,” Appl. Phys. Lett.99(22), 223105 (2011).
[CrossRef]

2010

L. Sun, G. Qin, J.-H. Seo, G. K. Celler, W. Zhou, and Z. Ma, “12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics,” Small6(22), 2553–2557 (2010).
[CrossRef] [PubMed]

F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter6(3), 439–455 (2010).
[CrossRef]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
[CrossRef] [PubMed]

2009

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett.34(9), 1408–1410 (2009).
[CrossRef] [PubMed]

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

G. X. Qin, H. C. Yuan, G. K. Celler, W. D. Zhou, and Z. Q. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys.42(23), 234006 (2009).
[CrossRef]

C. Xia and H. K. Tsang, “Nanoholes Grating Couplers for Coupling Between Silicon-on-Insulator Waveguides and Optical Fibers,” IEEE Photon. J.1(3), 184–190 (2009).
[CrossRef]

2008

D.-H. Kim, J.-H. Ahn, H.-S. Kim, K. J. Lee, T.-H. Kim, C.-J. Yu, R. G. Nuzzo, and J. A. Rogers, “Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” IEEE Electron Device Lett.29(1), 73–76 (2008).
[CrossRef]

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

2006

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006).
[CrossRef]

J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo, and J. A. Rogers, “High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Lett.27(6), 460–462 (2006).
[CrossRef]

M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, “Elastically relaxed free-standing strained-silicon nanomembranes,” Nat. Mater.5(5), 388–393 (2006).
[CrossRef] [PubMed]

2005

E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett.86(9), 093507 (2005).
[CrossRef]

2004

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett.84(26), 5398–5400 (2004).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

2001

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001).
[CrossRef]

1977

Adesida, I.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006).
[CrossRef]

Ahn, J. H.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Ahn, J.-H.

D.-H. Kim, J.-H. Ahn, H.-S. Kim, K. J. Lee, T.-H. Kim, C.-J. Yu, R. G. Nuzzo, and J. A. Rogers, “Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” IEEE Electron Device Lett.29(1), 73–76 (2008).
[CrossRef]

J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo, and J. A. Rogers, “High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Lett.27(6), 460–462 (2006).
[CrossRef]

Baets, R.

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001).
[CrossRef]

Bedard, D.

Bienstman, P.

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001).
[CrossRef]

Breese, M. B. H.

Z. Y. Dang, M. Motapothula, Y. S. Ow, T. Venkatesan, M. B. H. Breese, M. A. Rana, and A. Osman, “Fabrication of large-area ultra-thin single crystal silicon membranes,” Appl. Phys. Lett.99(22), 223105 (2011).
[CrossRef]

Cavallo, F.

F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter6(3), 439–455 (2010).
[CrossRef]

Celler, G.

M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, “Elastically relaxed free-standing strained-silicon nanomembranes,” Nat. Mater.5(5), 388–393 (2006).
[CrossRef] [PubMed]

Celler, G. K.

G. Qin, H.-C. Yuan, G. K. Celler, W. Zhou, J. Ma, and Z. Ma, “RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate,” Microelectron. J.42(3), 509–514 (2011).
[CrossRef]

L. Sun, G. Qin, J.-H. Seo, G. K. Celler, W. Zhou, and Z. Ma, “12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics,” Small6(22), 2553–2557 (2010).
[CrossRef] [PubMed]

G. X. Qin, H. C. Yuan, G. K. Celler, W. D. Zhou, and Z. Q. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys.42(23), 234006 (2009).
[CrossRef]

Cheben, P.

Chen, L.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Chen, R. T.

Cho, H. A.

Y. Yang, Y. Hwang, H. A. Cho, J. H. Song, S. J. Park, J. A. Rogers, and H. C. Ko, “Arrays of Silicon Micro/Nanostructures Formed in Suspended Configurations for Deterministic Assembly Using Flat and Roller-Type Stamps,” Small7(4), 484–491 (2011).
[CrossRef] [PubMed]

Choi, W. M.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Chuwongin, S.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Dang, Z. Y.

Z. Y. Dang, M. Motapothula, Y. S. Ow, T. Venkatesan, M. B. H. Breese, M. A. Rana, and A. Osman, “Fabrication of large-area ultra-thin single crystal silicon membranes,” Appl. Phys. Lett.99(22), 223105 (2011).
[CrossRef]

Densmore, A.

Ebil, O.

Eriksson, M. A.

M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, “Elastically relaxed free-standing strained-silicon nanomembranes,” Nat. Mater.5(5), 388–393 (2006).
[CrossRef] [PubMed]

Feng, X.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006).
[CrossRef]

Friesen, M.

M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, “Elastically relaxed free-standing strained-silicon nanomembranes,” Nat. Mater.5(5), 388–393 (2006).
[CrossRef] [PubMed]

Halir, R.

Hong, C.-S.

Hosseini, A.

Huang, Y. Y.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006).
[CrossRef]

Hwang, Y.

Y. Yang, Y. Hwang, H. A. Cho, J. H. Song, S. J. Park, J. A. Rogers, and H. C. Ko, “Arrays of Silicon Micro/Nanostructures Formed in Suspended Configurations for Deterministic Assembly Using Flat and Roller-Type Stamps,” Small7(4), 484–491 (2011).
[CrossRef] [PubMed]

Janz, S.

Khang, D.-Y.

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett.84(26), 5398–5400 (2004).
[CrossRef]

Kim, D. H.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Kim, D.-H.

D.-H. Kim, J.-H. Ahn, H.-S. Kim, K. J. Lee, T.-H. Kim, C.-J. Yu, R. G. Nuzzo, and J. A. Rogers, “Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” IEEE Electron Device Lett.29(1), 73–76 (2008).
[CrossRef]

Kim, H. S.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Kim, H.-S.

D.-H. Kim, J.-H. Ahn, H.-S. Kim, K. J. Lee, T.-H. Kim, C.-J. Yu, R. G. Nuzzo, and J. A. Rogers, “Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” IEEE Electron Device Lett.29(1), 73–76 (2008).
[CrossRef]

J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo, and J. A. Rogers, “High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Lett.27(6), 460–462 (2006).
[CrossRef]

Kim, T. H.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Kim, T.-H.

D.-H. Kim, J.-H. Ahn, H.-S. Kim, K. J. Lee, T.-H. Kim, C.-J. Yu, R. G. Nuzzo, and J. A. Rogers, “Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” IEEE Electron Device Lett.29(1), 73–76 (2008).
[CrossRef]

Klein, L. J.

M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, “Elastically relaxed free-standing strained-silicon nanomembranes,” Nat. Mater.5(5), 388–393 (2006).
[CrossRef] [PubMed]

Ko, H. C.

Y. Yang, Y. Hwang, H. A. Cho, J. H. Song, S. J. Park, J. A. Rogers, and H. C. Ko, “Arrays of Silicon Micro/Nanostructures Formed in Suspended Configurations for Deterministic Assembly Using Flat and Roller-Type Stamps,” Small7(4), 484–491 (2011).
[CrossRef] [PubMed]

Kumar, V.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006).
[CrossRef]

Kwong, D.

Lagally, M. G.

J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011).
[CrossRef] [PubMed]

F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter6(3), 439–455 (2010).
[CrossRef]

M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, “Elastically relaxed free-standing strained-silicon nanomembranes,” Nat. Mater.5(5), 388–393 (2006).
[CrossRef] [PubMed]

Lapointe, J.

Lee, K. J.

D.-H. Kim, J.-H. Ahn, H.-S. Kim, K. J. Lee, T.-H. Kim, C.-J. Yu, R. G. Nuzzo, and J. A. Rogers, “Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” IEEE Electron Device Lett.29(1), 73–76 (2008).
[CrossRef]

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006).
[CrossRef]

J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo, and J. A. Rogers, “High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Lett.27(6), 460–462 (2006).
[CrossRef]

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett.84(26), 5398–5400 (2004).
[CrossRef]

Lin, C.-Y.

Liu, Z. J.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Lu, C.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Ma, J.

G. Qin, H.-C. Yuan, G. K. Celler, W. Zhou, J. Ma, and Z. Ma, “RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate,” Microelectron. J.42(3), 509–514 (2011).
[CrossRef]

Ma, R.

Ma, Z.

G. Qin, H.-C. Yuan, G. K. Celler, W. Zhou, J. Ma, and Z. Ma, “RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate,” Microelectron. J.42(3), 509–514 (2011).
[CrossRef]

L. Sun, G. Qin, J.-H. Seo, G. K. Celler, W. Zhou, and Z. Ma, “12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics,” Small6(22), 2553–2557 (2010).
[CrossRef] [PubMed]

Ma, Z. Q.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

G. X. Qin, H. C. Yuan, G. K. Celler, W. D. Zhou, and Z. Q. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys.42(23), 234006 (2009).
[CrossRef]

Meitl, M. A.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006).
[CrossRef]

Menard, E.

J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo, and J. A. Rogers, “High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Lett.27(6), 460–462 (2006).
[CrossRef]

E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett.86(9), 093507 (2005).
[CrossRef]

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett.84(26), 5398–5400 (2004).
[CrossRef]

Molina-Fernández, I.

Molina-Fernández, Í.

Motapothula, M.

Z. Y. Dang, M. Motapothula, Y. S. Ow, T. Venkatesan, M. B. H. Breese, M. A. Rana, and A. Osman, “Fabrication of large-area ultra-thin single crystal silicon membranes,” Appl. Phys. Lett.99(22), 223105 (2011).
[CrossRef]

Nuzzo, R. G.

J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011).
[CrossRef] [PubMed]

D.-H. Kim, J.-H. Ahn, H.-S. Kim, K. J. Lee, T.-H. Kim, C.-J. Yu, R. G. Nuzzo, and J. A. Rogers, “Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” IEEE Electron Device Lett.29(1), 73–76 (2008).
[CrossRef]

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006).
[CrossRef]

J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo, and J. A. Rogers, “High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Lett.27(6), 460–462 (2006).
[CrossRef]

E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett.86(9), 093507 (2005).
[CrossRef]

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett.84(26), 5398–5400 (2004).
[CrossRef]

Osman, A.

Z. Y. Dang, M. Motapothula, Y. S. Ow, T. Venkatesan, M. B. H. Breese, M. A. Rana, and A. Osman, “Fabrication of large-area ultra-thin single crystal silicon membranes,” Appl. Phys. Lett.99(22), 223105 (2011).
[CrossRef]

Ow, Y. S.

Z. Y. Dang, M. Motapothula, Y. S. Ow, T. Venkatesan, M. B. H. Breese, M. A. Rana, and A. Osman, “Fabrication of large-area ultra-thin single crystal silicon membranes,” Appl. Phys. Lett.99(22), 223105 (2011).
[CrossRef]

Pang, H. Q.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Park, S. J.

Y. Yang, Y. Hwang, H. A. Cho, J. H. Song, S. J. Park, J. A. Rogers, and H. C. Ko, “Arrays of Silicon Micro/Nanostructures Formed in Suspended Configurations for Deterministic Assembly Using Flat and Roller-Type Stamps,” Small7(4), 484–491 (2011).
[CrossRef] [PubMed]

Prather, D. W.

Qiang, Z. X.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Qin, G.

G. Qin, H.-C. Yuan, G. K. Celler, W. Zhou, J. Ma, and Z. Ma, “RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate,” Microelectron. J.42(3), 509–514 (2011).
[CrossRef]

L. Sun, G. Qin, J.-H. Seo, G. K. Celler, W. Zhou, and Z. Ma, “12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics,” Small6(22), 2553–2557 (2010).
[CrossRef] [PubMed]

Qin, G. X.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

G. X. Qin, H. C. Yuan, G. K. Celler, W. D. Zhou, and Z. Q. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys.42(23), 234006 (2009).
[CrossRef]

Rana, M. A.

Z. Y. Dang, M. Motapothula, Y. S. Ow, T. Venkatesan, M. B. H. Breese, M. A. Rana, and A. Osman, “Fabrication of large-area ultra-thin single crystal silicon membranes,” Appl. Phys. Lett.99(22), 223105 (2011).
[CrossRef]

Roberts, M. M.

M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, “Elastically relaxed free-standing strained-silicon nanomembranes,” Nat. Mater.5(5), 388–393 (2006).
[CrossRef] [PubMed]

Rogers, J. A.

Y. Yang, Y. Hwang, H. A. Cho, J. H. Song, S. J. Park, J. A. Rogers, and H. C. Ko, “Arrays of Silicon Micro/Nanostructures Formed in Suspended Configurations for Deterministic Assembly Using Flat and Roller-Type Stamps,” Small7(4), 484–491 (2011).
[CrossRef] [PubMed]

J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011).
[CrossRef] [PubMed]

D.-H. Kim, J.-H. Ahn, H.-S. Kim, K. J. Lee, T.-H. Kim, C.-J. Yu, R. G. Nuzzo, and J. A. Rogers, “Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” IEEE Electron Device Lett.29(1), 73–76 (2008).
[CrossRef]

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006).
[CrossRef]

J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo, and J. A. Rogers, “High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Lett.27(6), 460–462 (2006).
[CrossRef]

E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett.86(9), 093507 (2005).
[CrossRef]

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett.84(26), 5398–5400 (2004).
[CrossRef]

Savage, D. E.

M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, “Elastically relaxed free-standing strained-silicon nanomembranes,” Nat. Mater.5(5), 388–393 (2006).
[CrossRef] [PubMed]

Schmid, J. H.

Seo, J.-H.

L. Sun, G. Qin, J.-H. Seo, G. K. Celler, W. Zhou, and Z. Ma, “12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics,” Small6(22), 2553–2557 (2010).
[CrossRef] [PubMed]

Sharkawy, A.

Slinker, K. A.

M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, “Elastically relaxed free-standing strained-silicon nanomembranes,” Nat. Mater.5(5), 388–393 (2006).
[CrossRef] [PubMed]

Song, J. H.

Y. Yang, Y. Hwang, H. A. Cho, J. H. Song, S. J. Park, J. A. Rogers, and H. C. Ko, “Arrays of Silicon Micro/Nanostructures Formed in Suspended Configurations for Deterministic Assembly Using Flat and Roller-Type Stamps,” Small7(4), 484–491 (2011).
[CrossRef] [PubMed]

Song, J. Z.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Subbaraman, H.

Sun, L.

L. Sun, G. Qin, J.-H. Seo, G. K. Celler, W. Zhou, and Z. Ma, “12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics,” Small6(22), 2553–2557 (2010).
[CrossRef] [PubMed]

Taillaert, D.

Tsang, H. K.

C. Xia and H. K. Tsang, “Nanoholes Grating Couplers for Coupling Between Silicon-on-Insulator Waveguides and Optical Fibers,” IEEE Photon. J.1(3), 184–190 (2009).
[CrossRef]

Venkatesan, T.

Z. Y. Dang, M. Motapothula, Y. S. Ow, T. Venkatesan, M. B. H. Breese, M. A. Rana, and A. Osman, “Fabrication of large-area ultra-thin single crystal silicon membranes,” Appl. Phys. Lett.99(22), 223105 (2011).
[CrossRef]

Wangüemert-Pérez, J. G.

Xia, C.

C. Xia and H. K. Tsang, “Nanoholes Grating Couplers for Coupling Between Silicon-on-Insulator Waveguides and Optical Fibers,” IEEE Photon. J.1(3), 184–190 (2009).
[CrossRef]

Xu, D. X.

Xu, D.-X.

Xu, X.

Yang, H. J.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Yang, W. Q.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Yang, Y.

Y. Yang, Y. Hwang, H. A. Cho, J. H. Song, S. J. Park, J. A. Rogers, and H. C. Ko, “Arrays of Silicon Micro/Nanostructures Formed in Suspended Configurations for Deterministic Assembly Using Flat and Roller-Type Stamps,” Small7(4), 484–491 (2011).
[CrossRef] [PubMed]

Yariv, A.

Yeh, P.

Yu, C.-J.

D.-H. Kim, J.-H. Ahn, H.-S. Kim, K. J. Lee, T.-H. Kim, C.-J. Yu, R. G. Nuzzo, and J. A. Rogers, “Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” IEEE Electron Device Lett.29(1), 73–76 (2008).
[CrossRef]

Yuan, H. C.

G. X. Qin, H. C. Yuan, G. K. Celler, W. D. Zhou, and Z. Q. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys.42(23), 234006 (2009).
[CrossRef]

Yuan, H.-C.

G. Qin, H.-C. Yuan, G. K. Celler, W. Zhou, J. Ma, and Z. Ma, “RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate,” Microelectron. J.42(3), 509–514 (2011).
[CrossRef]

Zablocki, M. J.

Zhao, D. Y.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Zhou, W.

G. Qin, H.-C. Yuan, G. K. Celler, W. Zhou, J. Ma, and Z. Ma, “RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate,” Microelectron. J.42(3), 509–514 (2011).
[CrossRef]

L. Sun, G. Qin, J.-H. Seo, G. K. Celler, W. Zhou, and Z. Ma, “12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics,” Small6(22), 2553–2557 (2010).
[CrossRef] [PubMed]

Zhou, W. D.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

G. X. Qin, H. C. Yuan, G. K. Celler, W. D. Zhou, and Z. Q. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys.42(23), 234006 (2009).
[CrossRef]

Zhu, Z.

J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo, and J. A. Rogers, “High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Lett.27(6), 460–462 (2006).
[CrossRef]

Zhu, Z. T.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006).
[CrossRef]

Appl. Phys. Lett.

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett.84(26), 5398–5400 (2004).
[CrossRef]

E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett.86(9), 093507 (2005).
[CrossRef]

Z. Y. Dang, M. Motapothula, Y. S. Ow, T. Venkatesan, M. B. H. Breese, M. A. Rana, and A. Osman, “Fabrication of large-area ultra-thin single crystal silicon membranes,” Appl. Phys. Lett.99(22), 223105 (2011).
[CrossRef]

IEEE Electron Device Lett.

J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo, and J. A. Rogers, “High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Lett.27(6), 460–462 (2006).
[CrossRef]

D.-H. Kim, J.-H. Ahn, H.-S. Kim, K. J. Lee, T.-H. Kim, C.-J. Yu, R. G. Nuzzo, and J. A. Rogers, “Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” IEEE Electron Device Lett.29(1), 73–76 (2008).
[CrossRef]

IEEE Photon. J.

C. Xia and H. K. Tsang, “Nanoholes Grating Couplers for Coupling Between Silicon-on-Insulator Waveguides and Optical Fibers,” IEEE Photon. J.1(3), 184–190 (2009).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. D Appl. Phys.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

G. X. Qin, H. C. Yuan, G. K. Celler, W. D. Zhou, and Z. Q. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys.42(23), 234006 (2009).
[CrossRef]

Microelectron. J.

G. Qin, H.-C. Yuan, G. K. Celler, W. Zhou, J. Ma, and Z. Ma, “RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate,” Microelectron. J.42(3), 509–514 (2011).
[CrossRef]

Nat. Mater.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006).
[CrossRef]

M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, “Elastically relaxed free-standing strained-silicon nanomembranes,” Nat. Mater.5(5), 388–393 (2006).
[CrossRef] [PubMed]

Nature

J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Quantum Electron.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001).
[CrossRef]

Science

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Small

Y. Yang, Y. Hwang, H. A. Cho, J. H. Song, S. J. Park, J. A. Rogers, and H. C. Ko, “Arrays of Silicon Micro/Nanostructures Formed in Suspended Configurations for Deterministic Assembly Using Flat and Roller-Type Stamps,” Small7(4), 484–491 (2011).
[CrossRef] [PubMed]

L. Sun, G. Qin, J.-H. Seo, G. K. Celler, W. Zhou, and Z. Ma, “12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics,” Small6(22), 2553–2557 (2010).
[CrossRef] [PubMed]

Soft Matter

F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter6(3), 439–455 (2010).
[CrossRef]

Other

H. Pang, H.-C. Yuan, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible Microwave Single-Crystal Si TFTs with fmax of 5.5 GHz,” Device Research Conference 2007 65th Annual, 15–16 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the subwavelength grating (SWG) coupler on a SiNM transferred onto a glass substrate. Lsub, Wsub, Λsub, ΛG, and θ denote the hole length, the hole width, the hole period, the grating period, and the angle of the fiber with respect to the surface normal, respectively.

Fig. 2
Fig. 2

(a) Optical microscope image of a 2cm x 2cm 250nm thick SiNM transferred onto a 1mm thick glass substrate. The thickness of the SU-8 bottom cladding layer is measured to be 8.22µm, (b) Scanning electron microscope (SEM) image of the fabricated subwavelength grating coupler (SWG) on the transferred SiNM. A schematic of the fabricated structure is shown in the inset.

Fig. 3
Fig. 3

Simulated back reflection (black), coupling efficiency to air (red) and coupling efficiency to a fiber positioned at 10° with respect to surface normal of the designed SWG coupler (blue) as a function of wavelength of operation. A peak fiber coupling efficiency of 42% is achieved at a wavelength of 1549nm. An SU-8 layer thickness of 8.22 µm is used in the simulation.

Fig. 4
Fig. 4

Measured transmission spectrum of the grating coupler fabricated on SiNM on glass substrate. Peak efficiency of 39.17% (−4.07dB) is obtained at a wavelength of 1555.56nm. The 1 dB and 3 dB bandwidths are 29 nm and 57 nm, respectively.

Fig. 5
Fig. 5

Simulation showing the effect of SU-8 layer thickness variation from 7µm to 9µm on the coupling efficiency to air. A periodic efficiency fluctuation between 53% to 67% is produced. The red dot indicates our fabricated result.

Metrics