Abstract

Improvements in the output power of a directly GaN diode-laser-pumped Ti:Al2O3 laser are achieved by using double-sided pumping. In continuous wave operation, an output power of 159 mW is reported. A tuning range of over 125 nm with output powers in excess of 100 mW is achieved. Pulses of 111 fs duration and an average power of 101 mW are demonstrated by mode locking the laser with a saturable Bragg reflector. Pumping with GaN diode lasers at wavelengths around 450 nm induces an additional parasitic crystal loss of about 1% per resonator roundtrip that is not observed at the conventional green pump wavelengths.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Moulton, “Ti-doped sapphire: tunable solid-state laser,” Opt. Photon. News8, 9 (1982).
  2. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am.3, 125–133 (1986).
  3. P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B3, 134–139 (1986).
  4. J. Klein and J. D. Kafka, “The Ti:Sapphire laser: the flexible research tool,” Nat. Photonics4, 289–289 (2010).
  5. W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express20(7), 6989–7001 (2012).
    [PubMed]
  6. B. Gao, W. Jiang, A. W. Liu, Y. Lu, C. F. Cheng, G. S. Cheng, and S. M. Hu, “Ultrasensitive near-infrared cavity ring-down spectrometer for precise line profile measurement,” Rev. Sci. Instrum.81(4), 043105 (2010).
    [PubMed]
  7. A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett.24(14), 996–998 (1999).
    [PubMed]
  8. M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry–Perot etalon,” J. Appl. Phys.97, 103108 (2005).
  9. B. Resan, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE6871, 687116 (2008).
  10. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys.66, 1051–1056 (1989).
  11. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kaertner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express17(16), 14374–14388 (2009).
    [PubMed]
  12. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29, 1179–1191 (1993).
  13. C. Hönninger, F. Morier-Genoud, M. Moser, U. Keller, L. R. Brovelli, and C. Harder, “Efficient and tunable diode-pumped femtosecond Yb:glass lasers,” Opt. Lett.23(2), 126–128 (1998).
    [PubMed]
  14. A. Müller, O. B. Jensen, A. Unterhuber, T. Le, A. Stingl, K.-H. Hasler, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, “Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses,” Opt. Express19(13), 12156–12163 (2011).
    [PubMed]
  15. G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng.50, 215–219 (2012).
  16. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett.34(21), 3334–3336 (2009).
    [PubMed]
  17. S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys.35, L74–L76 (1996).
  18. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Direct diode-laser pumping of a mode-locked Ti:sapphire laser,” Opt. Lett.36(2), 304–306 (2011).
    [PubMed]
  19. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express20(13), 13677–13683 (2012).
    [PubMed]
  20. J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 8–14 (2005).
    [PubMed]
  21. D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, “Femtosecond optical transfection of cells: viability and efficiency,” Opt. Express14(16), 7125–7133 (2006).
    [PubMed]
  22. J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum.79(10), 103705 (2008).
    [PubMed]
  23. A. J. Alfrey, “Modeling of longitudinally pumped cw Ti:Sapphire laser oscillators,” IEEE J. Quantum Electron.25, 760–766 (1989).
  24. Z. Zhang, T. Nakagawa, H. Takada, K. Torizuka, T. Sugaya, T. Miura, and K. Kobayashi, “Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers,” Opt. Commun.176, 171–175 (2000).
  25. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2, 454–464 (1996).
  26. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20, 277–278 (1966).
  27. J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).
  28. A. Hoffstadt, “Design and performance of a high-average-power flashlamp-pumped Ti:Sapphire laser and amplifier,” IEEE J. Quantum Electron.33, 1850–1863 (1997).

2012 (3)

2011 (2)

2010 (2)

B. Gao, W. Jiang, A. W. Liu, Y. Lu, C. F. Cheng, G. S. Cheng, and S. M. Hu, “Ultrasensitive near-infrared cavity ring-down spectrometer for precise line profile measurement,” Rev. Sci. Instrum.81(4), 043105 (2010).
[PubMed]

J. Klein and J. D. Kafka, “The Ti:Sapphire laser: the flexible research tool,” Nat. Photonics4, 289–289 (2010).

2009 (2)

2008 (2)

B. Resan, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE6871, 687116 (2008).

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum.79(10), 103705 (2008).
[PubMed]

2006 (1)

2005 (2)

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 8–14 (2005).
[PubMed]

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry–Perot etalon,” J. Appl. Phys.97, 103108 (2005).

2000 (1)

Z. Zhang, T. Nakagawa, H. Takada, K. Torizuka, T. Sugaya, T. Miura, and K. Kobayashi, “Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers,” Opt. Commun.176, 171–175 (2000).

1999 (1)

1998 (1)

1997 (1)

A. Hoffstadt, “Design and performance of a high-average-power flashlamp-pumped Ti:Sapphire laser and amplifier,” IEEE J. Quantum Electron.33, 1850–1863 (1997).

1996 (2)

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2, 454–464 (1996).

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys.35, L74–L76 (1996).

1993 (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29, 1179–1191 (1993).

1989 (2)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys.66, 1051–1056 (1989).

A. J. Alfrey, “Modeling of longitudinally pumped cw Ti:Sapphire laser oscillators,” IEEE J. Quantum Electron.25, 760–766 (1989).

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).

1986 (2)

P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am.3, 125–133 (1986).

P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B3, 134–139 (1986).

1982 (1)

P. F. Moulton, “Ti-doped sapphire: tunable solid-state laser,” Opt. Photon. News8, 9 (1982).

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20, 277–278 (1966).

Agate, B.

Albers, P.

Alfrey, A. J.

A. J. Alfrey, “Modeling of longitudinally pumped cw Ti:Sapphire laser oscillators,” IEEE J. Quantum Electron.25, 760–766 (1989).

Andersen, P. E.

Ando, J.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum.79(10), 103705 (2008).
[PubMed]

Backus, S.

Bartels, A.

Bautista, G.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum.79(10), 103705 (2008).
[PubMed]

Birge, J. R.

Brovelli, L. R.

Brown, C. T. A.

Burns, D.

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).

Chaitanya Kumar, S.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng.50, 215–219 (2012).

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29, 1179–1191 (1993).

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys.66, 1051–1056 (1989).

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).

Cheng, C. F.

B. Gao, W. Jiang, A. W. Liu, Y. Lu, C. F. Cheng, G. S. Cheng, and S. M. Hu, “Ultrasensitive near-infrared cavity ring-down spectrometer for precise line profile measurement,” Rev. Sci. Instrum.81(4), 043105 (2010).
[PubMed]

Cheng, G. S.

B. Gao, W. Jiang, A. W. Liu, Y. Lu, C. F. Cheng, G. S. Cheng, and S. M. Hu, “Ultrasensitive near-infrared cavity ring-down spectrometer for precise line profile measurement,” Rev. Sci. Instrum.81(4), 043105 (2010).
[PubMed]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20, 277–278 (1966).

Cundiff, S. T.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2, 454–464 (1996).

Cunningham, J. E.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2, 454–464 (1996).

Daria, V. R.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum.79(10), 103705 (2008).
[PubMed]

Dekorsy, T.

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29, 1179–1191 (1993).

Demirbas, U.

Devi, K.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng.50, 215–219 (2012).

Dholakia, K.

Durfee, C. G.

Ebrahim-Zadeh, M.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng.50, 215–219 (2012).

Erbert, G.

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20, 277–278 (1966).

Fischer, P.

Fujimoto, J. G.

Fujita, K.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum.79(10), 103705 (2008).
[PubMed]

Gao, B.

B. Gao, W. Jiang, A. W. Liu, Y. Lu, C. F. Cheng, G. S. Cheng, and S. M. Hu, “Ultrasensitive near-infrared cavity ring-down spectrometer for precise line profile measurement,” Rev. Sci. Instrum.81(4), 043105 (2010).
[PubMed]

Garlick, J.

Girkin, J. M.

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 8–14 (2005).
[PubMed]

Gunn-Moore, F.

Harder, C.

Hasler, K.-H.

Hill, S.

Hoffstadt, A.

A. Hoffstadt, “Design and performance of a high-average-power flashlamp-pumped Ti:Sapphire laser and amplifier,” IEEE J. Quantum Electron.33, 1850–1863 (1997).

Hönninger, C.

Hu, S. M.

B. Gao, W. Jiang, A. W. Liu, Y. Lu, C. F. Cheng, G. S. Cheng, and S. M. Hu, “Ultrasensitive near-infrared cavity ring-down spectrometer for precise line profile measurement,” Rev. Sci. Instrum.81(4), 043105 (2010).
[PubMed]

Huber, G.

Iwasa, N.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys.35, L74–L76 (1996).

Jan, W. Y.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2, 454–464 (1996).

Jensen, O. B.

Jiang, W.

B. Gao, W. Jiang, A. W. Liu, Y. Lu, C. F. Cheng, G. S. Cheng, and S. M. Hu, “Ultrasensitive near-infrared cavity ring-down spectrometer for precise line profile measurement,” Rev. Sci. Instrum.81(4), 043105 (2010).
[PubMed]

Kaertner, F. X.

Kafka, J. D.

J. Klein and J. D. Kafka, “The Ti:Sapphire laser: the flexible research tool,” Nat. Photonics4, 289–289 (2010).

Kapteyn, H.

Keller, U.

Kemp, A. J.

Kirchner, M.

Kiyoku, H.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys.35, L74–L76 (1996).

Klein, J.

J. Klein and J. D. Kafka, “The Ti:Sapphire laser: the flexible research tool,” Nat. Photonics4, 289–289 (2010).

Knox, W. H.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2, 454–464 (1996).

Kobayashi, K.

Z. Zhang, T. Nakagawa, H. Takada, K. Torizuka, T. Sugaya, T. Miura, and K. Kobayashi, “Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers,” Opt. Commun.176, 171–175 (2000).

Kolodziejski, L. A.

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29, 1179–1191 (1993).

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).

Kurz, H.

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29, 1179–1191 (1993).

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys.66, 1051–1056 (1989).

Lagatsky, A. A.

Le, T.

Li, D.

Liu, A. W.

B. Gao, W. Jiang, A. W. Liu, Y. Lu, C. F. Cheng, G. S. Cheng, and S. M. Hu, “Ultrasensitive near-infrared cavity ring-down spectrometer for precise line profile measurement,” Rev. Sci. Instrum.81(4), 043105 (2010).
[PubMed]

Lu, Y.

B. Gao, W. Jiang, A. W. Liu, Y. Lu, C. F. Cheng, G. S. Cheng, and S. M. Hu, “Ultrasensitive near-infrared cavity ring-down spectrometer for precise line profile measurement,” Rev. Sci. Instrum.81(4), 043105 (2010).
[PubMed]

Maclean, A. J.

Malcoci, A.

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry–Perot etalon,” J. Appl. Phys.97, 103108 (2005).

Matsushita, T.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys.35, L74–L76 (1996).

Mayorga, I. C.

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry–Perot etalon,” J. Appl. Phys.97, 103108 (2005).

McConnell, G.

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 8–14 (2005).
[PubMed]

Mikulics, M.

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry–Perot etalon,” J. Appl. Phys.97, 103108 (2005).

Miles, R. E.

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry–Perot etalon,” J. Appl. Phys.97, 103108 (2005).

Miura, T.

Z. Zhang, T. Nakagawa, H. Takada, K. Torizuka, T. Sugaya, T. Miura, and K. Kobayashi, “Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers,” Opt. Commun.176, 171–175 (2000).

Morier-Genoud, F.

Moser, M.

Moulton, P. F.

P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am.3, 125–133 (1986).

P. F. Moulton, “Ti-doped sapphire: tunable solid-state laser,” Opt. Photon. News8, 9 (1982).

Müller, A.

Murnane, M.

Naftaly, M.

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry–Perot etalon,” J. Appl. Phys.97, 103108 (2005).

Nagahama, S.-I.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys.35, L74–L76 (1996).

Nakagawa, T.

Z. Zhang, T. Nakagawa, H. Takada, K. Torizuka, T. Sugaya, T. Miura, and K. Kobayashi, “Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers,” Opt. Commun.176, 171–175 (2000).

Nakamura, S.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys.35, L74–L76 (1996).

Newkirk, H. W.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys.66, 1051–1056 (1989).

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29, 1179–1191 (1993).

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys.66, 1051–1056 (1989).

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).

Petersen, P. M.

Petrich, G. S.

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).

Resan, B.

B. Resan, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE6871, 687116 (2008).

Riches, A.

Roth, P. W.

Samanta, G. K.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng.50, 215–219 (2012).

Sennaroglu, A.

Senoh, M.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys.35, L74–L76 (1996).

Shea, K.

Sibbett, W.

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29, 1179–1191 (1993).

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys.66, 1051–1056 (1989).

Smith, N.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum.79(10), 103705 (2008).
[PubMed]

Squier, J. A.

Stark, E.

Staver, P. R.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).

Stevenson, D.

Stingl, A.

Stone, M. R.

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry–Perot etalon,” J. Appl. Phys.97, 103108 (2005).

Storz, T.

Sugaya, T.

Z. Zhang, T. Nakagawa, H. Takada, K. Torizuka, T. Sugaya, T. Miura, and K. Kobayashi, “Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers,” Opt. Commun.176, 171–175 (2000).

Sugimoto, Y.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys.35, L74–L76 (1996).

Sumpf, B.

Taft, G.

Takada, H.

Z. Zhang, T. Nakagawa, H. Takada, K. Torizuka, T. Sugaya, T. Miura, and K. Kobayashi, “Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers,” Opt. Commun.176, 171–175 (2000).

Torizuka, K.

Z. Zhang, T. Nakagawa, H. Takada, K. Torizuka, T. Sugaya, T. Miura, and K. Kobayashi, “Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers,” Opt. Commun.176, 171–175 (2000).

Tsampoula, X.

Tsuda, S.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2, 454–464 (1996).

Unterhuber, A.

Yamada, T.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys.35, L74–L76 (1996).

Zhang, Z.

Z. Zhang, T. Nakagawa, H. Takada, K. Torizuka, T. Sugaya, T. Miura, and K. Kobayashi, “Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers,” Opt. Commun.176, 171–175 (2000).

IEEE J. Quantum Electron. (4)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29, 1179–1191 (1993).

A. J. Alfrey, “Modeling of longitudinally pumped cw Ti:Sapphire laser oscillators,” IEEE J. Quantum Electron.25, 760–766 (1989).

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).

A. Hoffstadt, “Design and performance of a high-average-power flashlamp-pumped Ti:Sapphire laser and amplifier,” IEEE J. Quantum Electron.33, 1850–1863 (1997).

IEEE J. Sel. Top. Quantum Electron. (1)

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2, 454–464 (1996).

J. Appl. Phys. (2)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys.66, 1051–1056 (1989).

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry–Perot etalon,” J. Appl. Phys.97, 103108 (2005).

J. Opt. Soc. Am. (1)

P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am.3, 125–133 (1986).

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys.35, L74–L76 (1996).

Microsc. Res. Tech. (1)

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 8–14 (2005).
[PubMed]

Nat. Photonics (1)

J. Klein and J. D. Kafka, “The Ti:Sapphire laser: the flexible research tool,” Nat. Photonics4, 289–289 (2010).

Opt. Commun. (1)

Z. Zhang, T. Nakagawa, H. Takada, K. Torizuka, T. Sugaya, T. Miura, and K. Kobayashi, “Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers,” Opt. Commun.176, 171–175 (2000).

Opt. Express (5)

Opt. Lasers Eng. (1)

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng.50, 215–219 (2012).

Opt. Lett. (4)

Opt. Photon. News (1)

P. F. Moulton, “Ti-doped sapphire: tunable solid-state laser,” Opt. Photon. News8, 9 (1982).

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20, 277–278 (1966).

Proc. SPIE (1)

B. Resan, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE6871, 687116 (2008).

Rev. Sci. Instrum. (2)

B. Gao, W. Jiang, A. W. Liu, Y. Lu, C. F. Cheng, G. S. Cheng, and S. M. Hu, “Ultrasensitive near-infrared cavity ring-down spectrometer for precise line profile measurement,” Rev. Sci. Instrum.81(4), 043105 (2010).
[PubMed]

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum.79(10), 103705 (2008).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Asymmetric, Z-folded 4-mirror resonator for double-sided, diode-laser pumping. (b) Beam cross section of GaN diode laser shaped with a collimation lens (f = 4.5 mm) and a cylindrical Galilean telescope (f = −25.4 and f = 250 mm).

Fig. 2
Fig. 2

(a) Ti:sapphire laser output power at 800 nm and 3% output coupling as a function of pump power from two GaN diode lasers (452 and 454 nm). (b) Tuning curve of the Ti:sapphire laser pumped with 880 mW at 452 nm and 2% output coupling (one-sided pumping) or with a combined 1770 mW at 452 and 454 nm and 3% output coupling (double-sided pumping).

Fig. 3
Fig. 3

Interferometric autocorrelation (a) and spectrum (b) of the pulses at maximum double-sided diode-laser pump power (1770 mW) and 101 mW of average output power (2% output coupling). The divergence from the ideal 8:1 ratio resulted from an asymmetry in the interferometer used for the autocorrelation. The centre wavelength was 818 nm and the repetition rate was 127 MHz.

Metrics