Abstract

We report the first demonstration of a semiconductor laser monolithically integrated with an active polarization controller, which consists of a polarization mode converter followed by an active, differential phase shifter. High speed modulation of the device output polarization is demonstrated via current injection to the phase shifter section.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yoshizawa, Handbook of Optical Metrology: Principles and Applications, 1st ed. (CRC Press, 2009).
  2. R. M. A. Azzam, Principles and Applications of Optical Polarimetry (John Wiley & Sons, 2009).
  3. M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
    [CrossRef]
  4. X. S. Yao, “Optical communications based on optical polarization multiplexing and demultiplexing,” United States Patent 7343100 (2008).
  5. F. A. P. Tooley and B. S. Wherrett, Optical Computing, 1st ed. (Taylor & Francis, 1st ed. 1989).
  6. V. K. Yadavalli and M. V. Pishko, “Biosensing in microfluidic channels using fluorescence polarization,” Anal. Chim. Acta507(1), 123–128 (2004).
    [CrossRef]
  7. V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally-periodic structure,” Opt. Commun.127(1–3), 7–13 (1996).
    [CrossRef]
  8. B. M. Holmes and D. C. Hutchings, “Realisation of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett.18(1), 43–45 (2006).
    [CrossRef]
  9. D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode-beating,” IEEE Photon. J.3(3), 450–461 (2011).
    [CrossRef]
  10. J. J. G. M. van der Tol, L. M. Augustin, A. A. M. Kok, U. Khalique, and M. K. Smit, “Use of polarization in InP-based integrated optics,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2008), paper CThM3.
  11. J. J. Bregenzer, S. McMaster, M. Sorel, B. M. Holmes, and D. C. Hutchings, “Compact polarization mode converter monolithically integrated within a semiconductor laser,” J. Lightwave Technol.27(14), 2732–2736 (2009).
    [CrossRef]
  12. D. Dhirhe, T. Slight, B. M. Holmes, D. C. Hutchings, and C. Ironside, “Polarization control of a quantum cascade laser,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2012), paper JW2A99.
  13. R. P. Green, M. Haji, L. Hou, G. Mezosi, R. Dylewicz, and A. E. Kelly, “Fast saturable absorption and 10 GHz wavelength conversion in Al-quaternary multiple quantum wells,” Opt. Express19(10), 9737–9743 (2011).
    [CrossRef] [PubMed]
  14. S. H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express17(14), 11267–11273 (2009).
    [CrossRef] [PubMed]
  15. J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol.8(6), 1136–1155 (1993).
    [CrossRef]

2011 (2)

2009 (2)

2006 (1)

B. M. Holmes and D. C. Hutchings, “Realisation of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett.18(1), 43–45 (2006).
[CrossRef]

2004 (1)

V. K. Yadavalli and M. V. Pishko, “Biosensing in microfluidic channels using fluorescence polarization,” Anal. Chim. Acta507(1), 123–128 (2004).
[CrossRef]

2001 (1)

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

1996 (1)

V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally-periodic structure,” Opt. Commun.127(1–3), 7–13 (1996).
[CrossRef]

1993 (1)

J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol.8(6), 1136–1155 (1993).
[CrossRef]

Amann, M. C.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Bosch, T.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Bregenzer, J. J.

Dylewicz, R.

Fontaine, M.

V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally-periodic structure,” Opt. Commun.127(1–3), 7–13 (1996).
[CrossRef]

Green, R. P.

Haji, M.

Holmes, B. M.

D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode-beating,” IEEE Photon. J.3(3), 450–461 (2011).
[CrossRef]

J. J. Bregenzer, S. McMaster, M. Sorel, B. M. Holmes, and D. C. Hutchings, “Compact polarization mode converter monolithically integrated within a semiconductor laser,” J. Lightwave Technol.27(14), 2732–2736 (2009).
[CrossRef]

B. M. Holmes and D. C. Hutchings, “Realisation of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett.18(1), 43–45 (2006).
[CrossRef]

Hou, L.

Hutchings, D. C.

D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode-beating,” IEEE Photon. J.3(3), 450–461 (2011).
[CrossRef]

J. J. Bregenzer, S. McMaster, M. Sorel, B. M. Holmes, and D. C. Hutchings, “Compact polarization mode converter monolithically integrated within a semiconductor laser,” J. Lightwave Technol.27(14), 2732–2736 (2009).
[CrossRef]

B. M. Holmes and D. C. Hutchings, “Realisation of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett.18(1), 43–45 (2006).
[CrossRef]

Kelly, A. E.

Kim, S. H.

Lescure, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Marsh, J. H.

J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol.8(6), 1136–1155 (1993).
[CrossRef]

McMaster, S.

Mezosi, G.

Mizumoto, T.

Myllyla, R.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Pishko, M. V.

V. K. Yadavalli and M. V. Pishko, “Biosensing in microfluidic channels using fluorescence polarization,” Anal. Chim. Acta507(1), 123–128 (2004).
[CrossRef]

Rioux, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Shoji, Y.

Sorel, M.

Takei, R.

Tzolov, V. P.

V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally-periodic structure,” Opt. Commun.127(1–3), 7–13 (1996).
[CrossRef]

Yadavalli, V. K.

V. K. Yadavalli and M. V. Pishko, “Biosensing in microfluidic channels using fluorescence polarization,” Anal. Chim. Acta507(1), 123–128 (2004).
[CrossRef]

Anal. Chim. Acta (1)

V. K. Yadavalli and M. V. Pishko, “Biosensing in microfluidic channels using fluorescence polarization,” Anal. Chim. Acta507(1), 123–128 (2004).
[CrossRef]

IEEE Photon. J. (1)

D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode-beating,” IEEE Photon. J.3(3), 450–461 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. M. Holmes and D. C. Hutchings, “Realisation of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett.18(1), 43–45 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally-periodic structure,” Opt. Commun.127(1–3), 7–13 (1996).
[CrossRef]

Opt. Eng. (1)

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Opt. Express (2)

Semicond. Sci. Technol. (1)

J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol.8(6), 1136–1155 (1993).
[CrossRef]

Other (6)

D. Dhirhe, T. Slight, B. M. Holmes, D. C. Hutchings, and C. Ironside, “Polarization control of a quantum cascade laser,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2012), paper JW2A99.

X. S. Yao, “Optical communications based on optical polarization multiplexing and demultiplexing,” United States Patent 7343100 (2008).

F. A. P. Tooley and B. S. Wherrett, Optical Computing, 1st ed. (Taylor & Francis, 1st ed. 1989).

T. Yoshizawa, Handbook of Optical Metrology: Principles and Applications, 1st ed. (CRC Press, 2009).

R. M. A. Azzam, Principles and Applications of Optical Polarimetry (John Wiley & Sons, 2009).

J. J. G. M. van der Tol, L. M. Augustin, A. A. M. Kok, U. Khalique, and M. K. Smit, “Use of polarization in InP-based integrated optics,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2008), paper CThM3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the semiconductor laser with active polarization control consisting of an tapered F-P laser, waveguide slot, polarization mode converter (PMC), differential phase shifter and angled facet output.

Fig. 2
Fig. 2

SEM cross section image of a sample cleaved through the center of a PMC (Left) and a profile view of the transition between PMC and symmetric guide section (Right).

Fig. 3
Fig. 3

Output polarization TM purity versus DPS current for a range of laser bias currents in mA. The transparency point for each laser bias is indicated on the graph.

Fig. 4
Fig. 4

(a) Output versus DPS current for polarization analyzer angles of 45 and −45 degrees. (b) Output with the addition of a quarter-wave-plate with a fast axis aligned in the plane of the wafer.

Fig. 5
Fig. 5

Polarization switched output measured through an analyzer set at 45° after the application of an 8ns input current pulse to the DPS.

Metrics