Abstract

We perform detailed measurements of the higher-order-mode content of a low-loss, hollow-core, photonic-bandgap fiber. Mode content is characterized using Spatially and Spectrally resolved (S2) imaging, revealing a variety of phenomena. Discrete mode scattering to core-guided modes are measured at small relative group-delays. At large group delays a continuum of surface modes and core-guided modes can be observed. The LP11 mode is observed to split into four different group delays with different orientations, with the relative orientations preserved as the mode propagates through the fiber. Cutback measurements allow for quantification of the loss of different individual modes. The behavior of the modes in the low loss region of the fiber is compared to that in a high loss region of the fiber. Finally, a new measurement technique is introduced, the sliding-window Fourier transform of high-resolution transmission spectra of hollow-core fibers, which displays the dependence of HOM content on both wavelength and group delay. This measurement is used to illustrate the HOM content as function of coil diameter.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, and K. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express13(16), 6153–6159 (2005).
    [CrossRef] [PubMed]
  2. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13(1), 236–244 (2005).
    [CrossRef] [PubMed]
  3. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express16(6), 4337–4346 (2008).
    [CrossRef] [PubMed]
  4. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. S. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express16(22), 17972–17981 (2008).
    [CrossRef] [PubMed]
  5. O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete Modal Decomposition for Optical Waveguides,” Phys. Rev. Lett.94(14), 143902 (2005).
    [CrossRef] [PubMed]
  6. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16(10), 7233–7243 (2008).
    [CrossRef] [PubMed]
  7. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers” IEEE J. Sel. Top. Quantum Electron.15, 61–70 (2009).
  8. A. M. DeSantolo, D. J. DiGiovanni, F. V. DiMarcello, J. Fini, M. Hassan, L. Meng, E. M. Monberg, J. W. Nicholson, R. M. Ortiz, and R. S. Windeler, “High resolution S2 imaging of photonic bandgap fiber” CLEO 2011, paper CFM4.
  9. D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt.51(4), 450–456 (2012).
    [CrossRef] [PubMed]
  10. M.-J. Li, J. A. West, and K. W. Koch, “Modeling Effects of Structural Distortions on Air-Core Photonic Bandgap Fibers,” J. Lightwave Technol.25(9), 2463–2468 (2007).
    [CrossRef]
  11. F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, Advances and Limitations in the Modeling of Fabricated Photonic Bandgap Fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFC2.
  12. J. M. Fini and J. W. Nicholson, “Bend-induced changes in group delay and comparison with S^2 mode-content measurements,” CLEO 2009 paper CWD5.

2012 (1)

2009 (1)

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers” IEEE J. Sel. Top. Quantum Electron.15, 61–70 (2009).

2008 (3)

2007 (1)

2005 (3)

Abdolvand, A.

Abouraddy, A. F.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete Modal Decomposition for Optical Waveguides,” Phys. Rev. Lett.94(14), 143902 (2005).
[CrossRef] [PubMed]

Birks, T. A.

Blin, S.

Chartier, T.

Chen, J. S. Y.

Couny, F.

Euser, T. G.

Farr, L.

Fini, J. M.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers” IEEE J. Sel. Top. Quantum Electron.15, 61–70 (2009).

Fink, Y.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete Modal Decomposition for Optical Waveguides,” Phys. Rev. Lett.94(14), 143902 (2005).
[CrossRef] [PubMed]

Gaeta, A.

Gallagher, M.

Ghalmi, S.

Hensley, C.

Joannopoulos, J. D.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete Modal Decomposition for Optical Waveguides,” Phys. Rev. Lett.94(14), 143902 (2005).
[CrossRef] [PubMed]

Kaminski, C. F.

Knight, J. C.

Koch, K.

Koch, K. W.

Le, S. D.

Li, M.-J.

Mangan, B. J.

Mason, M. W.

Mermelstein, M. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers” IEEE J. Sel. Top. Quantum Electron.15, 61–70 (2009).

Nguyen, D. M.

Nguyen, T. N.

Nicholson, J. W.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers” IEEE J. Sel. Top. Quantum Electron.15, 61–70 (2009).

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16(10), 7233–7243 (2008).
[CrossRef] [PubMed]

Nold, J.

Ouzounov, D.

Petrovich, M. N.

Poletti, F.

Provino, L.

Ramachandran, S.

Richardson, D. J.

Roberts, P. J.

Russell, P. S.

Sabert, H.

Scharrer, M.

Shapira, O.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete Modal Decomposition for Optical Waveguides,” Phys. Rev. Lett.94(14), 143902 (2005).
[CrossRef] [PubMed]

St. J. Russell, P.

Thual, M.

Tomlinson, A.

van Brakel, A.

Venkateraman, N.

West, J. A.

Whyte, G.

Williams, D. P.

Yablon, A. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers” IEEE J. Sel. Top. Quantum Electron.15, 61–70 (2009).

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16(10), 7233–7243 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers” IEEE J. Sel. Top. Quantum Electron.15, 61–70 (2009).

J. Lightwave Technol. (1)

Opt. Express (5)

Phys. Rev. Lett. (1)

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete Modal Decomposition for Optical Waveguides,” Phys. Rev. Lett.94(14), 143902 (2005).
[CrossRef] [PubMed]

Other (3)

A. M. DeSantolo, D. J. DiGiovanni, F. V. DiMarcello, J. Fini, M. Hassan, L. Meng, E. M. Monberg, J. W. Nicholson, R. M. Ortiz, and R. S. Windeler, “High resolution S2 imaging of photonic bandgap fiber” CLEO 2011, paper CFM4.

F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, Advances and Limitations in the Modeling of Fabricated Photonic Bandgap Fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFC2.

J. M. Fini and J. W. Nicholson, “Bend-induced changes in group delay and comparison with S^2 mode-content measurements,” CLEO 2009 paper CWD5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of the S2 imaging setup based on a tunable laser and CCD camera

Fig. 2
Fig. 2

Microscope image of the fabricated fiber

Fig. 3
Fig. 3

Loss spectrum measured using a broadband light source and an OSA on a 250m length of fiber.

Fig. 4
Fig. 4

Effective index vs wavelength is shown (a) for a simulated fiber geometry with significant surface mode content in the bandgap. Calculated mode profiles show some nearly ideal core modes, e.g. LP11 (b-c), LP02 (d), and LP31 (e), and other modes significantly distorted by interaction with surface modes: the LP02-LP21 group (f-h)

Fig. 5
Fig. 5

Examples of experimentally obtained higher-order modes obtained from the S2 imaging setup.

Fig. 6
Fig. 6

Mode beat vs. group delay measured in a 50 cm length of fiber and the associated higher-order mode images.

Fig. 7
Fig. 7

Mode images at large group delay measured at 1500 nm.

Fig. 8
Fig. 8

Mode beat spectrum measured from 1500 nm to 1505 nm for 0.5 m and 15 m lengths of fiber showing the group delay range associated with the LP11 peaks. For short lengths of fiber one broad peak is observed, but for long lengths of fiber, the LP11 fiber is observed to split into 4 separate peaks with different geometric orientations of LP11 modes associated with the different peaks.

Fig. 9
Fig. 9

LP11 mode images measured for 5 m, 10 m, and 15 m lengths of fiber for a wavelength scan range of 1500 nm to 1505 nm. For each of these lengths of fiber, four distinct LP11 modes were observed. The relative geometric orientation of the LP11 mode was preserved for the different lengths of fiber.

Fig. 10
Fig. 10

(a) Mode beats as a function of fiber length measured at 1500 nm. (b) Relative power in the various higher-order modes verses fiber length.

Fig. 11
Fig. 11

Higher order mode beats in a 20m length of fiber at 1500 nm compared to 1560 nm.

Fig. 12
Fig. 12

Mode beats versus fiber length at 1560 nm. The curves have been offset vertically for clarity. (a)-(f) Corresponding higher order mode images.

Fig. 13
Fig. 13

(a) Setup for measuring hollow-core fiber with a narrow-linewidth tunable laser and power meter. (b) Typical transmission spectrum showing interference due to coherent mode-beating.

Fig. 14
Fig. 14

Results of sliding-window Fourier-transform calculation on the high-resolution transmission spectrum showing HOM content as a function of group delay and wavelength for a 5 m length of fiber. (a) 15cm coil diameter and (b) 5 cm coil diameter

Metrics