Abstract

We report on the first results of diode pumped laser operation of Pr3+:LaF3 in a quasi continuous wave (qcw) mode with average output powers of up to 80.0 mW (≈ 161.3 mW qcw) and a maximum slope efficiency of 37% at 719.8 nm. Furthermore it was possible to operate the laser at 537.1 nm and 635.4 nm and to tune the emission wavelength from 609 nm to 623 nm. The pump source was an InGaN laser diode with a maximum output power of 1 W at a central emission wavelength of 442 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett.36, 1002–1004 (2011).
    [CrossRef] [PubMed]
  2. M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B102, 731–735 (2011).
    [CrossRef]
  3. T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett.99, 181103 (2011).
    [CrossRef]
  4. A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagayev, A. V. Butashin, and L. E. Li, “Quasi-cw Pr3+:LiYF4 laser with λ = 0.6395 μm and an average output power of 2.3 W,” Quantum Electron.28, 187–188 (1998).
    [CrossRef]
  5. T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B58, 149–151 (1994).
    [CrossRef]
  6. E. Heumann, C. Czeranowsky, T. Kellner, and G. Huber, “An efficient all-solid-state Pr3+:LiYF4 laser in the visible spectral range,” in Conference on Lasers and Electro-Optics (CLEO/US) 1999, OSA Technical Digest Series (Optical Society of America, 1999), paper CTuG1.
  7. B. Xu, P. Camy, J.-L. Doualan, Z. Cai, and Richard Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express19, 1191–1197 (2011).
    [CrossRef] [PubMed]
  8. F. Cornacchia, A. Richter, E. Heumann, G. Huber, D. Parisi, and M. Tonelli, “Visible laser emission of solid state pumped LiLuF4:Pr3+,” Opt. Express15, 992–1002 (2007).
    [CrossRef] [PubMed]
  9. A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express15, 5172–5178 (2007).
    [CrossRef] [PubMed]
  10. R. Solomon and L. Mueller, “Stimulated emission at 5985 Å from Pr+3 in LaF3,” Appl. Phys. Lett.3, 135–137 (1963).
    [CrossRef]
  11. G. G. Grigoryan, Yu. V. Orlov, E. A. Petrenko, A. Yu. Shashkov, and N. V. Znamenskiy, “The features of coherent stimulated emission of Pr3+ doped into a LaF3 matrix,” Laser Phys.15, 602–606 (2005).
  12. M. Mansmann, “Die Kristallstruktur von Lanthantrifluorid,” Zeitschrift fur Kristallographie122, 375–398 (1965).
    [CrossRef]
  13. P. Popov, N. Moiseev, A. Filimonova, P. Fedorov, V. Konyushkin, V. Osiko, A. Papashvili, A. Smirnov, and I. Mironov, “Thermal conductivity of LaF3-based single crystals and ceramics,” Inorg. Mater.48, 304–308 (2012).
    [CrossRef]
  14. P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77 K – 300 K,” J. Appl. Phys.38, 1603–1607 (1967).
    [CrossRef]
  15. G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys.46, 3580–3584 (1975).
    [CrossRef]
  16. J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3:Pr3+,” Phys. Rev. B25, 5638–5645 (1982).
    [CrossRef]
  17. Y. M. Cheung and S. K. Gayen, “Excited-state absorption in Pr3+:Y3A5O12,” Phys. Rev. B49, 14827–14835 (1994).
    [CrossRef]
  18. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B61, 151–158 (1995).
    [CrossRef]

2012 (1)

P. Popov, N. Moiseev, A. Filimonova, P. Fedorov, V. Konyushkin, V. Osiko, A. Papashvili, A. Smirnov, and I. Mironov, “Thermal conductivity of LaF3-based single crystals and ceramics,” Inorg. Mater.48, 304–308 (2012).
[CrossRef]

2011 (4)

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B102, 731–735 (2011).
[CrossRef]

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett.99, 181103 (2011).
[CrossRef]

B. Xu, P. Camy, J.-L. Doualan, Z. Cai, and Richard Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express19, 1191–1197 (2011).
[CrossRef] [PubMed]

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett.36, 1002–1004 (2011).
[CrossRef] [PubMed]

2007 (2)

2005 (1)

G. G. Grigoryan, Yu. V. Orlov, E. A. Petrenko, A. Yu. Shashkov, and N. V. Znamenskiy, “The features of coherent stimulated emission of Pr3+ doped into a LaF3 matrix,” Laser Phys.15, 602–606 (2005).

1998 (1)

A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagayev, A. V. Butashin, and L. E. Li, “Quasi-cw Pr3+:LiYF4 laser with λ = 0.6395 μm and an average output power of 2.3 W,” Quantum Electron.28, 187–188 (1998).
[CrossRef]

1995 (1)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B61, 151–158 (1995).
[CrossRef]

1994 (2)

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B58, 149–151 (1994).
[CrossRef]

Y. M. Cheung and S. K. Gayen, “Excited-state absorption in Pr3+:Y3A5O12,” Phys. Rev. B49, 14827–14835 (1994).
[CrossRef]

1982 (1)

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3:Pr3+,” Phys. Rev. B25, 5638–5645 (1982).
[CrossRef]

1975 (1)

G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys.46, 3580–3584 (1975).
[CrossRef]

1967 (1)

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77 K – 300 K,” J. Appl. Phys.38, 1603–1607 (1967).
[CrossRef]

1965 (1)

M. Mansmann, “Die Kristallstruktur von Lanthantrifluorid,” Zeitschrift fur Kristallographie122, 375–398 (1965).
[CrossRef]

1963 (1)

R. Solomon and L. Mueller, “Stimulated emission at 5985 Å from Pr+3 in LaF3,” Appl. Phys. Lett.3, 135–137 (1963).
[CrossRef]

Bagayev, S. N.

A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagayev, A. V. Butashin, and L. E. Li, “Quasi-cw Pr3+:LiYF4 laser with λ = 0.6395 μm and an average output power of 2.3 W,” Quantum Electron.28, 187–188 (1998).
[CrossRef]

Bludau, W.

G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys.46, 3580–3584 (1975).
[CrossRef]

Butashin, A. V.

A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagayev, A. V. Butashin, and L. E. Li, “Quasi-cw Pr3+:LiYF4 laser with λ = 0.6395 μm and an average output power of 2.3 W,” Quantum Electron.28, 187–188 (1998).
[CrossRef]

Cai, Z.

Camy, P.

Chai, B. H. T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B58, 149–151 (1994).
[CrossRef]

Cheung, Y. M.

Y. M. Cheung and S. K. Gayen, “Excited-state absorption in Pr3+:Y3A5O12,” Phys. Rev. B49, 14827–14835 (1994).
[CrossRef]

Cornacchia, F.

Croft, W. J.

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77 K – 300 K,” J. Appl. Phys.38, 1603–1607 (1967).
[CrossRef]

Czeranowsky, C.

E. Heumann, C. Czeranowsky, T. Kellner, and G. Huber, “An efficient all-solid-state Pr3+:LiYF4 laser in the visible spectral range,” in Conference on Lasers and Electro-Optics (CLEO/US) 1999, OSA Technical Digest Series (Optical Society of America, 1999), paper CTuG1.

Danger, T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B58, 149–151 (1994).
[CrossRef]

Danielmeyer, H. G.

G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys.46, 3580–3584 (1975).
[CrossRef]

Doualan, J.-L.

Fechner, M.

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B102, 731–735 (2011).
[CrossRef]

Fedorov, P.

P. Popov, N. Moiseev, A. Filimonova, P. Fedorov, V. Konyushkin, V. Osiko, A. Papashvili, A. Smirnov, and I. Mironov, “Thermal conductivity of LaF3-based single crystals and ceramics,” Inorg. Mater.48, 304–308 (2012).
[CrossRef]

Filimonova, A.

P. Popov, N. Moiseev, A. Filimonova, P. Fedorov, V. Konyushkin, V. Osiko, A. Papashvili, A. Smirnov, and I. Mironov, “Thermal conductivity of LaF3-based single crystals and ceramics,” Inorg. Mater.48, 304–308 (2012).
[CrossRef]

Gayen, S. K.

Y. M. Cheung and S. K. Gayen, “Excited-state absorption in Pr3+:Y3A5O12,” Phys. Rev. B49, 14827–14835 (1994).
[CrossRef]

Grigoryan, G. G.

G. G. Grigoryan, Yu. V. Orlov, E. A. Petrenko, A. Yu. Shashkov, and N. V. Znamenskiy, “The features of coherent stimulated emission of Pr3+ doped into a LaF3 matrix,” Laser Phys.15, 602–606 (2005).

Gün, T.

Hansen, N.-O.

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B102, 731–735 (2011).
[CrossRef]

Hegarty, J.

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3:Pr3+,” Phys. Rev. B25, 5638–5645 (1982).
[CrossRef]

Heumann, E.

F. Cornacchia, A. Richter, E. Heumann, G. Huber, D. Parisi, and M. Tonelli, “Visible laser emission of solid state pumped LiLuF4:Pr3+,” Opt. Express15, 992–1002 (2007).
[CrossRef] [PubMed]

A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express15, 5172–5178 (2007).
[CrossRef] [PubMed]

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B58, 149–151 (1994).
[CrossRef]

E. Heumann, C. Czeranowsky, T. Kellner, and G. Huber, “An efficient all-solid-state Pr3+:LiYF4 laser in the visible spectral range,” in Conference on Lasers and Electro-Optics (CLEO/US) 1999, OSA Technical Digest Series (Optical Society of America, 1999), paper CTuG1.

Huber, D. L.

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3:Pr3+,” Phys. Rev. B25, 5638–5645 (1982).
[CrossRef]

Huber, G.

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B102, 731–735 (2011).
[CrossRef]

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett.99, 181103 (2011).
[CrossRef]

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett.36, 1002–1004 (2011).
[CrossRef] [PubMed]

A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express15, 5172–5178 (2007).
[CrossRef] [PubMed]

F. Cornacchia, A. Richter, E. Heumann, G. Huber, D. Parisi, and M. Tonelli, “Visible laser emission of solid state pumped LiLuF4:Pr3+,” Opt. Express15, 992–1002 (2007).
[CrossRef] [PubMed]

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B61, 151–158 (1995).
[CrossRef]

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B58, 149–151 (1994).
[CrossRef]

G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys.46, 3580–3584 (1975).
[CrossRef]

E. Heumann, C. Czeranowsky, T. Kellner, and G. Huber, “An efficient all-solid-state Pr3+:LiYF4 laser in the visible spectral range,” in Conference on Lasers and Electro-Optics (CLEO/US) 1999, OSA Technical Digest Series (Optical Society of America, 1999), paper CTuG1.

Isaev, N. P.

A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagayev, A. V. Butashin, and L. E. Li, “Quasi-cw Pr3+:LiYF4 laser with λ = 0.6395 μm and an average output power of 2.3 W,” Quantum Electron.28, 187–188 (1998).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagayev, A. V. Butashin, and L. E. Li, “Quasi-cw Pr3+:LiYF4 laser with λ = 0.6395 μm and an average output power of 2.3 W,” Quantum Electron.28, 187–188 (1998).
[CrossRef]

Karlov, V. N.

A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagayev, A. V. Butashin, and L. E. Li, “Quasi-cw Pr3+:LiYF4 laser with λ = 0.6395 μm and an average output power of 2.3 W,” Quantum Electron.28, 187–188 (1998).
[CrossRef]

Kellner, T.

E. Heumann, C. Czeranowsky, T. Kellner, and G. Huber, “An efficient all-solid-state Pr3+:LiYF4 laser in the visible spectral range,” in Conference on Lasers and Electro-Optics (CLEO/US) 1999, OSA Technical Digest Series (Optical Society of America, 1999), paper CTuG1.

Klein, P. H.

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77 K – 300 K,” J. Appl. Phys.38, 1603–1607 (1967).
[CrossRef]

Koetke, J.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B61, 151–158 (1995).
[CrossRef]

Konyushkin, V.

P. Popov, N. Moiseev, A. Filimonova, P. Fedorov, V. Konyushkin, V. Osiko, A. Papashvili, A. Smirnov, and I. Mironov, “Thermal conductivity of LaF3-based single crystals and ceramics,” Inorg. Mater.48, 304–308 (2012).
[CrossRef]

Kruhler, W. W.

G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys.46, 3580–3584 (1975).
[CrossRef]

Li, L. E.

A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagayev, A. V. Butashin, and L. E. Li, “Quasi-cw Pr3+:LiYF4 laser with λ = 0.6395 μm and an average output power of 2.3 W,” Quantum Electron.28, 187–188 (1998).
[CrossRef]

Lyashenko, A. I.

A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagayev, A. V. Butashin, and L. E. Li, “Quasi-cw Pr3+:LiYF4 laser with λ = 0.6395 μm and an average output power of 2.3 W,” Quantum Electron.28, 187–188 (1998).
[CrossRef]

Mansmann, M.

M. Mansmann, “Die Kristallstruktur von Lanthantrifluorid,” Zeitschrift fur Kristallographie122, 375–398 (1965).
[CrossRef]

Metz, P.

Mironov, I.

P. Popov, N. Moiseev, A. Filimonova, P. Fedorov, V. Konyushkin, V. Osiko, A. Papashvili, A. Smirnov, and I. Mironov, “Thermal conductivity of LaF3-based single crystals and ceramics,” Inorg. Mater.48, 304–308 (2012).
[CrossRef]

Moiseev, N.

P. Popov, N. Moiseev, A. Filimonova, P. Fedorov, V. Konyushkin, V. Osiko, A. Papashvili, A. Smirnov, and I. Mironov, “Thermal conductivity of LaF3-based single crystals and ceramics,” Inorg. Mater.48, 304–308 (2012).
[CrossRef]

Moncorgé, Richard

Mueller, L.

R. Solomon and L. Mueller, “Stimulated emission at 5985 Å from Pr+3 in LaF3,” Appl. Phys. Lett.3, 135–137 (1963).
[CrossRef]

Orlov, Yu. V.

G. G. Grigoryan, Yu. V. Orlov, E. A. Petrenko, A. Yu. Shashkov, and N. V. Znamenskiy, “The features of coherent stimulated emission of Pr3+ doped into a LaF3 matrix,” Laser Phys.15, 602–606 (2005).

Osiko, V.

P. Popov, N. Moiseev, A. Filimonova, P. Fedorov, V. Konyushkin, V. Osiko, A. Papashvili, A. Smirnov, and I. Mironov, “Thermal conductivity of LaF3-based single crystals and ceramics,” Inorg. Mater.48, 304–308 (2012).
[CrossRef]

Ostroumov, V.

Papashvili, A.

P. Popov, N. Moiseev, A. Filimonova, P. Fedorov, V. Konyushkin, V. Osiko, A. Papashvili, A. Smirnov, and I. Mironov, “Thermal conductivity of LaF3-based single crystals and ceramics,” Inorg. Mater.48, 304–308 (2012).
[CrossRef]

Parisi, D.

Pavlovich, V. L.

A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagayev, A. V. Butashin, and L. E. Li, “Quasi-cw Pr3+:LiYF4 laser with λ = 0.6395 μm and an average output power of 2.3 W,” Quantum Electron.28, 187–188 (1998).
[CrossRef]

Petermann, K.

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B102, 731–735 (2011).
[CrossRef]

Petrenko, E. A.

G. G. Grigoryan, Yu. V. Orlov, E. A. Petrenko, A. Yu. Shashkov, and N. V. Znamenskiy, “The features of coherent stimulated emission of Pr3+ doped into a LaF3 matrix,” Laser Phys.15, 602–606 (2005).

Popov, P.

P. Popov, N. Moiseev, A. Filimonova, P. Fedorov, V. Konyushkin, V. Osiko, A. Papashvili, A. Smirnov, and I. Mironov, “Thermal conductivity of LaF3-based single crystals and ceramics,” Inorg. Mater.48, 304–308 (2012).
[CrossRef]

Reichert, F.

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B102, 731–735 (2011).
[CrossRef]

Richter, A.

Sandrock, T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B58, 149–151 (1994).
[CrossRef]

Seelert, W.

Shashkov, A. Yu.

G. G. Grigoryan, Yu. V. Orlov, E. A. Petrenko, A. Yu. Shashkov, and N. V. Znamenskiy, “The features of coherent stimulated emission of Pr3+ doped into a LaF3 matrix,” Laser Phys.15, 602–606 (2005).

Smirnov, A.

P. Popov, N. Moiseev, A. Filimonova, P. Fedorov, V. Konyushkin, V. Osiko, A. Papashvili, A. Smirnov, and I. Mironov, “Thermal conductivity of LaF3-based single crystals and ceramics,” Inorg. Mater.48, 304–308 (2012).
[CrossRef]

Solomon, R.

R. Solomon and L. Mueller, “Stimulated emission at 5985 Å from Pr+3 in LaF3,” Appl. Phys. Lett.3, 135–137 (1963).
[CrossRef]

Tonelli, M.

Xu, B.

Yen, W. M.

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3:Pr3+,” Phys. Rev. B25, 5638–5645 (1982).
[CrossRef]

Znamenskiy, N. V.

G. G. Grigoryan, Yu. V. Orlov, E. A. Petrenko, A. Yu. Shashkov, and N. V. Znamenskiy, “The features of coherent stimulated emission of Pr3+ doped into a LaF3 matrix,” Laser Phys.15, 602–606 (2005).

Appl. Phys. B (3)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B61, 151–158 (1995).
[CrossRef]

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B102, 731–735 (2011).
[CrossRef]

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B58, 149–151 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

R. Solomon and L. Mueller, “Stimulated emission at 5985 Å from Pr+3 in LaF3,” Appl. Phys. Lett.3, 135–137 (1963).
[CrossRef]

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett.99, 181103 (2011).
[CrossRef]

Inorg. Mater. (1)

P. Popov, N. Moiseev, A. Filimonova, P. Fedorov, V. Konyushkin, V. Osiko, A. Papashvili, A. Smirnov, and I. Mironov, “Thermal conductivity of LaF3-based single crystals and ceramics,” Inorg. Mater.48, 304–308 (2012).
[CrossRef]

J. Appl. Phys. (2)

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77 K – 300 K,” J. Appl. Phys.38, 1603–1607 (1967).
[CrossRef]

G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys.46, 3580–3584 (1975).
[CrossRef]

Laser Phys. (1)

G. G. Grigoryan, Yu. V. Orlov, E. A. Petrenko, A. Yu. Shashkov, and N. V. Znamenskiy, “The features of coherent stimulated emission of Pr3+ doped into a LaF3 matrix,” Laser Phys.15, 602–606 (2005).

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3:Pr3+,” Phys. Rev. B25, 5638–5645 (1982).
[CrossRef]

Y. M. Cheung and S. K. Gayen, “Excited-state absorption in Pr3+:Y3A5O12,” Phys. Rev. B49, 14827–14835 (1994).
[CrossRef]

Quantum Electron. (1)

A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagayev, A. V. Butashin, and L. E. Li, “Quasi-cw Pr3+:LiYF4 laser with λ = 0.6395 μm and an average output power of 2.3 W,” Quantum Electron.28, 187–188 (1998).
[CrossRef]

Zeitschrift fur Kristallographie (1)

M. Mansmann, “Die Kristallstruktur von Lanthantrifluorid,” Zeitschrift fur Kristallographie122, 375–398 (1965).
[CrossRef]

Other (1)

E. Heumann, C. Czeranowsky, T. Kellner, and G. Huber, “An efficient all-solid-state Pr3+:LiYF4 laser in the visible spectral range,” in Conference on Lasers and Electro-Optics (CLEO/US) 1999, OSA Technical Digest Series (Optical Society of America, 1999), paper CTuG1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Room temperature polarized absorption spectra of Pr3+:LaF3.

Fig. 2
Fig. 2

Room temperature polarized emission spectra of 0.22 at.%-doped Pr3+:LaF3.

Fig. 3
Fig. 3

Unpolarized room temperature ESA spectrum of Pr3+:LaF3. Positive signal corresonds to bleaching of the ground state and/or to stimulated emission, negative to excited state absorption. The value ni denotes the population of the i-th level and ne = ∑i ni

Fig. 4
Fig. 4

Schematic of the hemispherical resonator setup.

Fig. 5
Fig. 5

Summary of laser performances and highest slope efficiencies of 0.42 at.% Pr3+:LaF3 at different emission wavelengths. Each wavelength was realized with a separate output coupling mirror.

Fig. 6
Fig. 6

Exemplary mode profiles of the laser operating at (a) 537.1 nm (b) 612.0 nm (c) 635.4 nm (d) 719.8 nm.

Fig. 7
Fig. 7

Spectral tuning of a 0.42 at.% Pr3+:LaF3 and output coupling rates of M1 and M2.

Tables (2)

Tables Icon

Table 1: Values of peak absorption and emission cross sections in Pr3+:LaF3.

Tables Icon

Table 2: Laser parameters obtained with a 4.9 mm long 0.42 at.% Pr3+:LaF3 crystal.

Metrics