Abstract

A mode and polarization converter is proposed and optimized for 3D photonic integrated circuits based on photonic crystals (PhCs). The device converts the index-guided TE mode of a W1 solid-core (SC) waveguide to the band-gap-guided TM mode of a W1 hollow-core (HC) waveguide in 3D PhCs, and vice versa. The conversion is achieved based on contra-directional mode coupling. For a 25μm-long device, simulations show that the power conversion efficiency is over 98% across a wavelength range of 16 nm centered at 1550 nm, whereas the reflection remains below –20dB. The polarization extinction ratio of the conversion is in principle infinitely high because both W1 waveguides operate in the single-mode regimes in this wavelength range.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991).
    [CrossRef] [PubMed]
  3. H. S. Sozuer and J. P. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt.41(2), 231–239 (1994).
    [CrossRef]
  4. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
    [CrossRef]
  5. S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett.77(22), 3490–3492 (2000).
    [CrossRef]
  6. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
    [CrossRef] [PubMed]
  7. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature414(6861), 289–293 (2001).
    [CrossRef] [PubMed]
  8. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature460(7253), 367–370 (2009).
    [CrossRef] [PubMed]
  9. L. Tang and T. Yoshie, “Monopole woodpile photonic crystal modes for light-matter interaction and optical trapping,” Opt. Express17(3), 1346–1351 (2009).
    [CrossRef] [PubMed]
  10. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  11. M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64(7), 075313 (2001).
    [CrossRef]
  12. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
    [CrossRef] [PubMed]
  13. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  14. A. Chutinan and S. John, “Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2 Pt 2), 026605 (2005).
    [CrossRef] [PubMed]
  15. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B62(12), 8212–8222 (2000).
    [CrossRef]
  16. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
    [CrossRef] [PubMed]
  17. H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys.79(10), 7483–7492 (1996).
    [CrossRef]
  18. E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett.91(2), 023902 (2003).
    [CrossRef] [PubMed]
  19. A. Talneau, P. Lalanne, M. Agio, and C. M. Soukoulis, “Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths,” Opt. Lett.27(17), 1522–1524 (2002).
    [CrossRef] [PubMed]
  20. M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B64(15), 155113 (2001).
    [CrossRef]
  21. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  22. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  23. S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De la Rue, T. F. Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B63(11), 113311 (2001).
    [CrossRef]
  24. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdre, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express11(13), 1490–1496 (2003).
    [CrossRef] [PubMed]
  25. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6 Pt 2), 066608 (2002).
    [CrossRef] [PubMed]
  26. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
    [CrossRef]
  27. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett.30(2), 138–140 (2005).
    [CrossRef] [PubMed]
  28. H. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol.23(1), 432–445 (2005).
    [CrossRef]
  29. Z. C. Wang and D. X. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B25(5), 747–753 (2008).
    [CrossRef]
  30. S. H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express17(14), 11267–11273 (2009).
    [CrossRef] [PubMed]
  31. M. V. Kotlyar, L. Bolla, M. Midrio, L. O’Faolain, and T. F. Krauss, “Compact polarization converter in InP-based material,” Opt. Express13(13), 5040–5045 (2005).
    [CrossRef] [PubMed]
  32. H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
    [CrossRef]
  33. M. Qi, M. R. Watts, T. Barwicz, L. Socci, P. T. Rakich, E. I. Ippen, and H. I. Smith, “Fabrication of Two-Layer Microphotonic Structures without Planarization,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CWD5.
  34. J. Ouyang, J. Wang, Y. Xuan, and M. Qi, “Hollow-core high-Q micro-cavities in three-dimensional photonic crystals,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2010), paper JThE33.

2012 (1)

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

2009 (3)

2008 (1)

2005 (4)

2004 (1)

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

2003 (4)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdre, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express11(13), 1490–1496 (2003).
[CrossRef] [PubMed]

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett.91(2), 023902 (2003).
[CrossRef] [PubMed]

2002 (2)

A. Talneau, P. Lalanne, M. Agio, and C. M. Soukoulis, “Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths,” Opt. Lett.27(17), 1522–1524 (2002).
[CrossRef] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6 Pt 2), 066608 (2002).
[CrossRef] [PubMed]

2001 (6)

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B64(15), 155113 (2001).
[CrossRef]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De la Rue, T. F. Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B63(11), 113311 (2001).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64(7), 075313 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature414(6861), 289–293 (2001).
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
[CrossRef] [PubMed]

2000 (2)

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B62(12), 8212–8222 (2000).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett.77(22), 3490–3492 (2000).
[CrossRef]

1998 (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

1996 (1)

H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys.79(10), 7483–7492 (1996).
[CrossRef]

1994 (1)

H. S. Sozuer and J. P. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt.41(2), 231–239 (1994).
[CrossRef]

1991 (1)

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991).
[CrossRef] [PubMed]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Agio, M.

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Azizi, K.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B64(15), 155113 (2001).
[CrossRef]

Benisty, H.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdre, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express11(13), 1490–1496 (2003).
[CrossRef] [PubMed]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De la Rue, T. F. Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B63(11), 113311 (2001).
[CrossRef]

H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys.79(10), 7483–7492 (1996).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Bienstman, P.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6 Pt 2), 066608 (2002).
[CrossRef] [PubMed]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Bo, X. Z.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature414(6861), 289–293 (2001).
[CrossRef] [PubMed]

Bolla, L.

Brooks, C.

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Chen, S.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Chutinan, A.

A. Chutinan and S. John, “Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2 Pt 2), 026605 (2005).
[CrossRef] [PubMed]

Dai, D. X.

Das, S.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

De la Rue, R. M.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De la Rue, T. F. Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B63(11), 113311 (2001).
[CrossRef]

Deng, H. H.

Dowling, J. P.

H. S. Sozuer and J. P. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt.41(2), 231–239 (1994).
[CrossRef]

Fan, S. H.

M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64(7), 075313 (2001).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B62(12), 8212–8222 (2000).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991).
[CrossRef] [PubMed]

Haus, H. A.

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Houdre, R.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdre, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express11(13), 1490–1496 (2003).
[CrossRef] [PubMed]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De la Rue, T. F. Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B63(11), 113311 (2001).
[CrossRef]

Huang, Y.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6 Pt 2), 066608 (2002).
[CrossRef] [PubMed]

Ippen, E. P.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Ishizaki, K.

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature460(7253), 367–370 (2009).
[CrossRef] [PubMed]

Jaskorzynska, B.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B64(15), 155113 (2001).
[CrossRef]

Jessop, P. E.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett.91(2), 023902 (2003).
[CrossRef] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6 Pt 2), 066608 (2002).
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64(7), 075313 (2001).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B62(12), 8212–8222 (2000).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett.77(22), 3490–3492 (2000).
[CrossRef]

John, S.

A. Chutinan and S. John, “Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2 Pt 2), 026605 (2005).
[CrossRef] [PubMed]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett.91(2), 023902 (2003).
[CrossRef] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6 Pt 2), 066608 (2002).
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64(7), 075313 (2001).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B62(12), 8212–8222 (2000).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett.77(22), 3490–3492 (2000).
[CrossRef]

Karlsson, A.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B64(15), 155113 (2001).
[CrossRef]

Kim, S. H.

Kotlyar, M. V.

Krauss, T. F.

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Lalanne, P.

Leung, K. M.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991).
[CrossRef] [PubMed]

Li, C.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Lidorikis, E.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett.91(2), 023902 (2003).
[CrossRef] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6 Pt 2), 066608 (2002).
[CrossRef] [PubMed]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Lo, P. G.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Midrio, M.

Mizumoto, T.

Noda, S.

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature460(7253), 367–370 (2009).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Norris, D. J.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature414(6861), 289–293 (2001).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

O’Faolain, L.

Oesterle, U.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De la Rue, T. F. Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B63(11), 113311 (2001).
[CrossRef]

Olivier, S.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdre, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express11(13), 1490–1496 (2003).
[CrossRef] [PubMed]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De la Rue, T. F. Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B63(11), 113311 (2001).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Povinelli, M. L.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett.91(2), 023902 (2003).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64(7), 075313 (2001).
[CrossRef]

Qi, M.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Qiu, M.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B64(15), 155113 (2001).
[CrossRef]

Rakich, P. T.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Rattier, M.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De la Rue, T. F. Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B63(11), 113311 (2001).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

Shoji, Y.

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6 Pt 2), 066608 (2002).
[CrossRef] [PubMed]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Smith, C. J. M.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdre, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express11(13), 1490–1496 (2003).
[CrossRef] [PubMed]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De la Rue, T. F. Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B63(11), 113311 (2001).
[CrossRef]

Smith, H. I.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Soukoulis, C. M.

Sozuer, H. S.

H. S. Sozuer and J. P. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt.41(2), 231–239 (1994).
[CrossRef]

Sturm, J. C.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature414(6861), 289–293 (2001).
[CrossRef] [PubMed]

Swillo, M.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B64(15), 155113 (2001).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

Takei, R.

Talneau, A.

Tang, L.

Thong, J. T. L.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B62(12), 8212–8222 (2000).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature414(6861), 289–293 (2001).
[CrossRef] [PubMed]

Wang, Z. C.

Watts, M. R.

Weisbuch, C.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdre, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express11(13), 1490–1496 (2003).
[CrossRef] [PubMed]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De la Rue, T. F. Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B63(11), 113311 (2001).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991).
[CrossRef] [PubMed]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

Yevick, D. O.

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

Yoshie, T.

Yu, M.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Zhang, H.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Zhou, H.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett.77(22), 3490–3492 (2000).
[CrossRef]

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

J. Appl. Phys. (1)

H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys.79(10), 7483–7492 (1996).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

H. S. Sozuer and J. P. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt.41(2), 231–239 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (5)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature414(6861), 289–293 (2001).
[CrossRef] [PubMed]

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature460(7253), 367–370 (2009).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (4)

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B64(15), 155113 (2001).
[CrossRef]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De la Rue, T. F. Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B63(11), 113311 (2001).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B62(12), 8212–8222 (2000).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64(7), 075313 (2001).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

A. Chutinan and S. John, “Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2 Pt 2), 026605 (2005).
[CrossRef] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6 Pt 2), 066608 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett.91(2), 023902 (2003).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991).
[CrossRef] [PubMed]

Science (1)

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other (4)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

M. Qi, M. R. Watts, T. Barwicz, L. Socci, P. T. Rakich, E. I. Ippen, and H. I. Smith, “Fabrication of Two-Layer Microphotonic Structures without Planarization,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CWD5.

J. Ouyang, J. Wang, Y. Xuan, and M. Qi, “Hollow-core high-Q micro-cavities in three-dimensional photonic crystals,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2010), paper JThE33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A schematic of a 3D PhC consisting of alternating layers of air-hole and dielectric-rod slabs in the same triangular lattice. Six such layers form one period along z.

Fig. 2
Fig. 2

(a) The band diagram of a W1 SC waveguide in a hole layer. The inset shows the x-y cross section of the waveguide. The red markers denote two index-guided TE modes, which are in the second and third Brillouin zones, respectively. The lower branch is of interest in this paper. (b) The mode profiles of selected components of the fundamental TE mode through the x-y and x-z mid-planes of the W1 SC waveguide, calculated at ky = 0.05(2π/ā) (ω≈0.55(2πc/a)). (c) The band diagram of a W1 HC waveguide in a rod layer. (d) The mode profiles of selected components of the fundamental TM mode of the HC waveguide, calculated at ky = 0.20(2π/ā).

Fig. 3
Fig. 3

(a) and (b) The energy ratio of each component of the TE mode is calculated for a series of W1 hole waveguides with different defect sizes. (c) and (d) The energy ratio of each component of the TM mode is calculated for a series of W1 rod waveguides with different defect sizes. All the calculations are done at a fixed frequency of ω0 = 0.55(2πc/a).

Fig. 4
Fig. 4

The wavevector of a W1 hole (red) or rod (blue) waveguide evolves with the defect size, where the simulations are performed at a fixed frequency of ω0 = 0.55(2πc/a).

Fig. 5
Fig. 5

(a) The band diagram of a bi-layer compound waveguide consisting of a W1 hole waveguide with rH’ = 0.56rH and a W1 rod waveguide with rR’ = 0.30rR. The inset is the x-z cross section of the waveguide. A mode-gap appears at the anti-crossing point of the TE (red) and TM (blue) bands. (b) The mode profiles of representative components of mode 1 and 2 in (a).

Fig. 6
Fig. 6

A schematic of the bi-layer mode converter. For the TE to TM mode conversion, A, B, and C denote the input, output and residual ports, respectively.

Fig. 7
Fig. 7

The TE to TM conversion spectra of the first converter design. The blue, green, black, and red curves represent converted TM, TE/TM residual, TE reflection, and their summation.

Fig. 8
Fig. 8

The snapshots of Ez and Hz fields through the mid-plane of each layer at different times show the TE to TM conversion process in an optimized converter. The red and blue arrows indicate the flow directions of the input TE and output TM, respectively.

Fig. 9
Fig. 9

The spectra for (a) the TE to TM and (b) the TM to TE conversions in an optimized converter. (c) and (d) are the corresponding plots in the logarithm scales.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

RU e i = unit-cell dV( ε E i E i * ) unit-cell dV( εE E * ) ,
κ HR = Δ ω gap 4c ( | n g,H |+| n g,R | ),
CE=tan h 2 ( κ HR L ).

Metrics