Abstract

Two methods for volume flow calculation from images of methane leakages to the atmosphere are presented. The images contain calibrated gas concentration × path length pixel information, and are processed with a block matching method and a theoretical velocity field method. Results from known methane flow in two laboratory setups and one unknown real leakage from a gas processing plant are compared with the image processing methods. The methods are generic and can be implemented in common infrared systems for gas visualization. This work provides a new tool for estimating and reporting volume flow emissions from gas processing plants to the authorities.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Lohberger, G. Hönninger, and U. Platt, “Ground-based imaging differential optical absorption spectroscopy of atmospheric gases,” Appl. Opt.43(24), 4711–4717 (2004).
    [CrossRef] [PubMed]
  2. S. Svanberg, “Geophysical gas monitoring using optical techniques: volcanoes, geothermal fields and mines,” Opt. Lasers Eng.37(2-3), 245–266 (2002).
    [CrossRef]
  3. G. Lammel, S. Schweizer, and P. Renaud, “MEMS infrared gas spectrometer based on a porous silicon tunable filter,” in Proceedings of the 14th Int. IEEE Conf. on MEMS (IEEE, 2001), pp. 578–581.
  4. G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
    [CrossRef]
  5. E. Hirsch and E. Agassi, “Detection of gaseous plumes in IR hyperspectral images - performance analysis,” IEEE Sens. J.10(3), 732–736 (2010).
    [CrossRef]
  6. P. E. Powers, T. J. Kulp, and R. Kennedy, “Demonstration of differential backscatter absorption gas imaging,” Appl. Opt.39(9), 1440–1448 (2000).
    [CrossRef] [PubMed]
  7. D. Stothard, M. Dunn, and C. Rae, “Hyperspectral imaging of gases with a continuous-wave pump-enhanced optical parametric oscillator,” Opt. Express12(5), 947–955 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-5-947 .
    [CrossRef] [PubMed]
  8. G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).
  9. J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express6(4), 92–103 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-4-92 .
    [CrossRef] [PubMed]
  10. J. Sandsten, H. Edner, and S. Svanberg, “Gas visualization of industrial hydrocarbon emissions,” Opt. Express12(7), 1443–1451 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-7-1443 .
    [CrossRef] [PubMed]
  11. J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
    [CrossRef]
  12. J. Gao and M. B. Lythe, “The maximum cross-correlation approach to detecting translational motions from sequential remote-sensing images,” Comput. Geosci.22(5), 525–534 (1996).
    [CrossRef]
  13. T. J. Crone, R. E. McDuff, and W. S. D. Wilcock, “Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems,” Exp. Fluids45(5), 899–915 (2008).
    [CrossRef]
  14. J. L. Harley and K. C. Gross, “Remote quantification of smokestack effluent mass flow rates using imaging fourier transform spectrometry,” Proc. SPIE8018, 801813, 801813-13 (2011).
    [CrossRef]
  15. S. B. Pope, “Free shear flows,” in Turbulent Flows (Cambridge, 2000), pp. 96–103.

2011

J. L. Harley and K. C. Gross, “Remote quantification of smokestack effluent mass flow rates using imaging fourier transform spectrometry,” Proc. SPIE8018, 801813, 801813-13 (2011).
[CrossRef]

2010

E. Hirsch and E. Agassi, “Detection of gaseous plumes in IR hyperspectral images - performance analysis,” IEEE Sens. J.10(3), 732–736 (2010).
[CrossRef]

2008

T. J. Crone, R. E. McDuff, and W. S. D. Wilcock, “Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems,” Exp. Fluids45(5), 899–915 (2008).
[CrossRef]

2007

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

2006

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

2004

2002

S. Svanberg, “Geophysical gas monitoring using optical techniques: volcanoes, geothermal fields and mines,” Opt. Lasers Eng.37(2-3), 245–266 (2002).
[CrossRef]

2000

1996

J. Gao and M. B. Lythe, “The maximum cross-correlation approach to detecting translational motions from sequential remote-sensing images,” Comput. Geosci.22(5), 525–534 (1996).
[CrossRef]

1994

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

Agassi, E.

E. Hirsch and E. Agassi, “Detection of gaseous plumes in IR hyperspectral images - performance analysis,” IEEE Sens. J.10(3), 732–736 (2010).
[CrossRef]

Barron, J. L.

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

Beauchemin, S. S.

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

Bishton, S.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Bluth, G. J. S.

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

Crone, T. J.

T. J. Crone, R. E. McDuff, and W. S. D. Wilcock, “Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems,” Exp. Fluids45(5), 899–915 (2008).
[CrossRef]

Dunn, M.

Edner, H.

Fleet, D. J.

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

Gao, J.

J. Gao and M. B. Lythe, “The maximum cross-correlation approach to detecting translational motions from sequential remote-sensing images,” Comput. Geosci.22(5), 525–534 (1996).
[CrossRef]

Gibson, G.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Gross, K. C.

J. L. Harley and K. C. Gross, “Remote quantification of smokestack effluent mass flow rates using imaging fourier transform spectrometry,” Proc. SPIE8018, 801813, 801813-13 (2011).
[CrossRef]

Harley, J. L.

J. L. Harley and K. C. Gross, “Remote quantification of smokestack effluent mass flow rates using imaging fourier transform spectrometry,” Proc. SPIE8018, 801813, 801813-13 (2011).
[CrossRef]

Hirsch, E.

E. Hirsch and E. Agassi, “Detection of gaseous plumes in IR hyperspectral images - performance analysis,” IEEE Sens. J.10(3), 732–736 (2010).
[CrossRef]

Hodgkinson, J.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Hönninger, G.

Kennedy, R.

Kulp, T. J.

Lohberger, F.

Lythe, M. B.

J. Gao and M. B. Lythe, “The maximum cross-correlation approach to detecting translational motions from sequential remote-sensing images,” Comput. Geosci.22(5), 525–534 (1996).
[CrossRef]

McDuff, R. E.

T. J. Crone, R. E. McDuff, and W. S. D. Wilcock, “Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems,” Exp. Fluids45(5), 899–915 (2008).
[CrossRef]

Murray, S.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Padgett, M.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Platt, U.

Powers, P. E.

Prata, A. J.

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

Pride, R.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Rae, C.

Realmuto, V. J.

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

Sandsten, J.

Shannon, J. M.

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

Stothard, D.

Strzoda, R.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Svanberg, S.

Watson, I. M.

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

Weibring, P.

Well, B. V.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Wilcock, W. S. D.

T. J. Crone, R. E. McDuff, and W. S. D. Wilcock, “Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems,” Exp. Fluids45(5), 899–915 (2008).
[CrossRef]

Appl. Opt.

Comput. Geosci.

J. Gao and M. B. Lythe, “The maximum cross-correlation approach to detecting translational motions from sequential remote-sensing images,” Comput. Geosci.22(5), 525–534 (1996).
[CrossRef]

Exp. Fluids

T. J. Crone, R. E. McDuff, and W. S. D. Wilcock, “Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems,” Exp. Fluids45(5), 899–915 (2008).
[CrossRef]

IEEE Sens. J.

E. Hirsch and E. Agassi, “Detection of gaseous plumes in IR hyperspectral images - performance analysis,” IEEE Sens. J.10(3), 732–736 (2010).
[CrossRef]

Int. J. Comput. Vis.

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

J. Volcanol. Geotherm. Res.

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

New J. Phys.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Opt. Express

Opt. Lasers Eng.

S. Svanberg, “Geophysical gas monitoring using optical techniques: volcanoes, geothermal fields and mines,” Opt. Lasers Eng.37(2-3), 245–266 (2002).
[CrossRef]

Proc. SPIE

J. L. Harley and K. C. Gross, “Remote quantification of smokestack effluent mass flow rates using imaging fourier transform spectrometry,” Proc. SPIE8018, 801813, 801813-13 (2011).
[CrossRef]

Other

S. B. Pope, “Free shear flows,” in Turbulent Flows (Cambridge, 2000), pp. 96–103.

G. Lammel, S. Schweizer, and P. Renaud, “MEMS infrared gas spectrometer based on a porous silicon tunable filter,” in Proceedings of the 14th Int. IEEE Conf. on MEMS (IEEE, 2001), pp. 578–581.

Supplementary Material (3)

» Media 1: MOV (1963 KB)     
» Media 2: MOV (853 KB)     
» Media 3: MOV (296 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Mean velocity profile for a turbulent gas jet (free shear flow). Nozzle diameter is d and exit velocity UJ [16].

Fig. 2
Fig. 2

Theoretical velocity field for turbulent gas jets. A: A velocity field applied to a laboratory measurement of 5 liters/min. B: radial profile at three different axial locations x, normalized with the nozzle exit velocity UJ . C: axial profile (r = 0) with three different velocities at infinity. Distances in nozzle diameters d = 10 mm.

Fig. 3
Fig. 3

Movie of block matching method. 6.3 liters/min at distance 7.5 m. Notice the gas acceleration due to the local extraction by the exhaust hood in the upper left part of the movie (Media 1).

Fig. 4
Fig. 4

Movie of a rising gas cloud with volume 0.50 liter. Volume flow through a horizontal line in the movie is calculated using block matching in this area only. The gas is extracted by a hood at the top of the image (Media 2).

Fig. 5
Fig. 5

Volume flow through a horizontal line in Fig. 4 calculated with block matching. One frame equals 50 ms.

Fig. 6
Fig. 6

Movie of velocity field method. 18 liters/min at distance 105 m (Media 3).

Fig. 7
Fig. 7

Left: Unknown gas leak at distance 95 m. The leak source is in the upper left part in the figure and the gas is moving to the right. The camera was positioned above the leak. Right: gas leak at distance 105 m. The side length is 2.7 m in both images. Concentrations in ppm × m.

Tables (5)

Tables Icon

Table 1 Flow calculation using a theoretical velocity field on an (close to) ideal 4 liters/min flow, without- and with damping of the central velocities.

Tables Icon

Table 2 Results from laboratory measurements.

Tables Icon

Table 3 Results from measurements at 105 m distance.

Tables Icon

Table 4 Results. Application to a real gas leak with unknown volume flow.

Tables Icon

Table 5 Theoretical gas concentration length errors due to gas temperature errors at four ΔT.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f( v )= 1 N i=1 N ( x i y i x i + y i ) 2 +β| v v neighbors |+γG( | v o | )
U 0 (x)= U J B (x x 0 )/d
r 1/2 (x)=S(x x 0 )

Metrics