Abstract

Two methods for volume flow calculation from images of methane leakages to the atmosphere are presented. The images contain calibrated gas concentration × path length pixel information, and are processed with a block matching method and a theoretical velocity field method. Results from known methane flow in two laboratory setups and one unknown real leakage from a gas processing plant are compared with the image processing methods. The methods are generic and can be implemented in common infrared systems for gas visualization. This work provides a new tool for estimating and reporting volume flow emissions from gas processing plants to the authorities.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Lohberger, G. Hönninger, and U. Platt, “Ground-based imaging differential optical absorption spectroscopy of atmospheric gases,” Appl. Opt.43(24), 4711–4717 (2004).
    [CrossRef] [PubMed]
  2. S. Svanberg, “Geophysical gas monitoring using optical techniques: volcanoes, geothermal fields and mines,” Opt. Lasers Eng.37(2-3), 245–266 (2002).
    [CrossRef]
  3. G. Lammel, S. Schweizer, and P. Renaud, “MEMS infrared gas spectrometer based on a porous silicon tunable filter,” in Proceedings of the 14th Int. IEEE Conf. on MEMS (IEEE, 2001), pp. 578–581.
  4. G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
    [CrossRef]
  5. E. Hirsch and E. Agassi, “Detection of gaseous plumes in IR hyperspectral images - performance analysis,” IEEE Sens. J.10(3), 732–736 (2010).
    [CrossRef]
  6. P. E. Powers, T. J. Kulp, and R. Kennedy, “Demonstration of differential backscatter absorption gas imaging,” Appl. Opt.39(9), 1440–1448 (2000).
    [CrossRef] [PubMed]
  7. D. Stothard, M. Dunn, and C. Rae, “Hyperspectral imaging of gases with a continuous-wave pump-enhanced optical parametric oscillator,” Opt. Express12(5), 947–955 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-5-947 .
    [CrossRef] [PubMed]
  8. G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).
  9. J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express6(4), 92–103 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-4-92 .
    [CrossRef] [PubMed]
  10. J. Sandsten, H. Edner, and S. Svanberg, “Gas visualization of industrial hydrocarbon emissions,” Opt. Express12(7), 1443–1451 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-7-1443 .
    [CrossRef] [PubMed]
  11. J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
    [CrossRef]
  12. J. Gao and M. B. Lythe, “The maximum cross-correlation approach to detecting translational motions from sequential remote-sensing images,” Comput. Geosci.22(5), 525–534 (1996).
    [CrossRef]
  13. T. J. Crone, R. E. McDuff, and W. S. D. Wilcock, “Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems,” Exp. Fluids45(5), 899–915 (2008).
    [CrossRef]
  14. J. L. Harley and K. C. Gross, “Remote quantification of smokestack effluent mass flow rates using imaging fourier transform spectrometry,” Proc. SPIE8018, 801813, 801813-13 (2011).
    [CrossRef]
  15. S. B. Pope, “Free shear flows,” in Turbulent Flows (Cambridge, 2000), pp. 96–103.

2011 (1)

J. L. Harley and K. C. Gross, “Remote quantification of smokestack effluent mass flow rates using imaging fourier transform spectrometry,” Proc. SPIE8018, 801813, 801813-13 (2011).
[CrossRef]

2010 (1)

E. Hirsch and E. Agassi, “Detection of gaseous plumes in IR hyperspectral images - performance analysis,” IEEE Sens. J.10(3), 732–736 (2010).
[CrossRef]

2008 (1)

T. J. Crone, R. E. McDuff, and W. S. D. Wilcock, “Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems,” Exp. Fluids45(5), 899–915 (2008).
[CrossRef]

2007 (1)

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

2006 (1)

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

2004 (3)

2002 (1)

S. Svanberg, “Geophysical gas monitoring using optical techniques: volcanoes, geothermal fields and mines,” Opt. Lasers Eng.37(2-3), 245–266 (2002).
[CrossRef]

2000 (2)

1996 (1)

J. Gao and M. B. Lythe, “The maximum cross-correlation approach to detecting translational motions from sequential remote-sensing images,” Comput. Geosci.22(5), 525–534 (1996).
[CrossRef]

1994 (1)

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

Agassi, E.

E. Hirsch and E. Agassi, “Detection of gaseous plumes in IR hyperspectral images - performance analysis,” IEEE Sens. J.10(3), 732–736 (2010).
[CrossRef]

Barron, J. L.

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

Beauchemin, S. S.

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

Bishton, S.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Bluth, G. J. S.

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

Crone, T. J.

T. J. Crone, R. E. McDuff, and W. S. D. Wilcock, “Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems,” Exp. Fluids45(5), 899–915 (2008).
[CrossRef]

Dunn, M.

Edner, H.

Fleet, D. J.

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

Gao, J.

J. Gao and M. B. Lythe, “The maximum cross-correlation approach to detecting translational motions from sequential remote-sensing images,” Comput. Geosci.22(5), 525–534 (1996).
[CrossRef]

Gibson, G.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Gross, K. C.

J. L. Harley and K. C. Gross, “Remote quantification of smokestack effluent mass flow rates using imaging fourier transform spectrometry,” Proc. SPIE8018, 801813, 801813-13 (2011).
[CrossRef]

Harley, J. L.

J. L. Harley and K. C. Gross, “Remote quantification of smokestack effluent mass flow rates using imaging fourier transform spectrometry,” Proc. SPIE8018, 801813, 801813-13 (2011).
[CrossRef]

Hirsch, E.

E. Hirsch and E. Agassi, “Detection of gaseous plumes in IR hyperspectral images - performance analysis,” IEEE Sens. J.10(3), 732–736 (2010).
[CrossRef]

Hodgkinson, J.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Hönninger, G.

Kennedy, R.

Kulp, T. J.

Lohberger, F.

Lythe, M. B.

J. Gao and M. B. Lythe, “The maximum cross-correlation approach to detecting translational motions from sequential remote-sensing images,” Comput. Geosci.22(5), 525–534 (1996).
[CrossRef]

McDuff, R. E.

T. J. Crone, R. E. McDuff, and W. S. D. Wilcock, “Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems,” Exp. Fluids45(5), 899–915 (2008).
[CrossRef]

Murray, S.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Padgett, M.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Platt, U.

Powers, P. E.

Prata, A. J.

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

Pride, R.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Rae, C.

Realmuto, V. J.

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

Sandsten, J.

Shannon, J. M.

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

Stothard, D.

Strzoda, R.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Svanberg, S.

Watson, I. M.

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

Weibring, P.

Well, B. V.

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Wilcock, W. S. D.

T. J. Crone, R. E. McDuff, and W. S. D. Wilcock, “Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems,” Exp. Fluids45(5), 899–915 (2008).
[CrossRef]

Appl. Opt. (2)

Comput. Geosci. (1)

J. Gao and M. B. Lythe, “The maximum cross-correlation approach to detecting translational motions from sequential remote-sensing images,” Comput. Geosci.22(5), 525–534 (1996).
[CrossRef]

Exp. Fluids (1)

T. J. Crone, R. E. McDuff, and W. S. D. Wilcock, “Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems,” Exp. Fluids45(5), 899–915 (2008).
[CrossRef]

IEEE Sens. J. (1)

E. Hirsch and E. Agassi, “Detection of gaseous plumes in IR hyperspectral images - performance analysis,” IEEE Sens. J.10(3), 732–736 (2010).
[CrossRef]

Int. J. Comput. Vis. (1)

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

J. Volcanol. Geotherm. Res. (1)

G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata, and V. J. Realmuto, “Development of an ultra-violet digital camera for volcanic SO2 imaging,” J. Volcanol. Geotherm. Res.161(1-2), 47–56 (2007).
[CrossRef]

New J. Phys. (1)

G. Gibson, B. V. Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys.8, 1–7 (2006).

Opt. Express (3)

Opt. Lasers Eng. (1)

S. Svanberg, “Geophysical gas monitoring using optical techniques: volcanoes, geothermal fields and mines,” Opt. Lasers Eng.37(2-3), 245–266 (2002).
[CrossRef]

Proc. SPIE (1)

J. L. Harley and K. C. Gross, “Remote quantification of smokestack effluent mass flow rates using imaging fourier transform spectrometry,” Proc. SPIE8018, 801813, 801813-13 (2011).
[CrossRef]

Other (2)

S. B. Pope, “Free shear flows,” in Turbulent Flows (Cambridge, 2000), pp. 96–103.

G. Lammel, S. Schweizer, and P. Renaud, “MEMS infrared gas spectrometer based on a porous silicon tunable filter,” in Proceedings of the 14th Int. IEEE Conf. on MEMS (IEEE, 2001), pp. 578–581.

Supplementary Material (3)

» Media 1: MOV (1963 KB)     
» Media 2: MOV (853 KB)     
» Media 3: MOV (296 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics