Abstract

In the last years a variety of fiber optic Raman probes emerged, which are only partly suited for in vivo applications. The in vivo capability is often limited by the bulkiness of the probes. The size is associated with the required filtering of the probes, which is necessary due to Raman scattering inside the fibers. We employed in-line fiber Bragg gratings (FBG) as notch filter for the collection path and integrated them in a novel type of Raman probe. Multicore singlemode fibers (MCSMF) were designed and drawn integrating 19 singlemode cores to achieve better collection efficiency. A Raman probe was assembled with one excitation fiber and six MCSMF with inscribed FBGs as collection fibers. The probe was characterized regarding Raman background suppression, collection efficiency, and distance dependence. First Raman measurements on brain tissue are presented.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Lond.)134(6), 1046–1057 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19475129 .
    [CrossRef] [PubMed]
  2. C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19343682 .
    [CrossRef] [PubMed]
  3. Q. Tu and C. Chang, “Diagnostic applications of Raman spectroscopy,” Nanomed.- Nanotechnology8, 545–558 (2011), doi:.
    [CrossRef]
  4. T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
    [CrossRef] [PubMed]
  5. Z. Huang, H. Zeng, I. Hamzavi, D. I. McLean, and H. Lui, “Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements,” Opt. Lett.26(22), 1782–1784 (2001).
    [CrossRef] [PubMed]
  6. C. Krafft, S. Dochow, I. Latka, B. Dietzek, and J. Popp, “Diagnosis and Screening of Cancer Tissues by fiber optic probe Raman spectroscopy,” Biomed. Spectrosc. Imaging1, 39–55 (2012), doi:.
    [CrossRef]
  7. Y. Komachi, H. Sato, K. Aizawa, and H. Tashiro, “Micro-optical fiber probe for use in an intravascular Raman endoscope,” Appl. Opt.44(22), 4722–4732 (2005), doi:.
    [CrossRef] [PubMed]
  8. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt.43(3), 542–554 (2004), doi:.
    [CrossRef] [PubMed]
  9. Y. Komachi, T. Katagiri, H. Sato, and H. Tashiro, “Improvement and analysis of a micro Raman probe,” Appl. Opt.48(9), 1683–1696 (2009), doi:.
    [CrossRef] [PubMed]
  10. I. A. Boere, T. C. Bakker Schut, J. van Den Boogert, R. W. F. de Bruin, and G. J. Puppels, “Use of fibre optic probes for detection of Barrett’s epithelium in the rat oesophagus by Raman spectroscopy,” Vib. Spectrosc.32(1), 47–55 (2003), doi:.
    [CrossRef]
  11. P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem.394(7), 1761–1774 (2009), http://www.springerlink.com/content/51k1n72204m22153/ .
    [CrossRef] [PubMed]
  12. A. Glebov, O. Mokhun, V. Smirnov, L. Glebov, B. Roussel, H.-J. Reich, and F. Adar, “Novel volume Bragg grating notch filters for ultralow-frequency Raman measurements,” (2010), http://www.optigrate.com/ .
  13. M. J. Pelletier, “Fiber optic probe with integral optical filtering”, Kaiser Optical Systems, Inc., US 5,862,273 (1999).
  14. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618320 .
  15. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618377 .
    [CrossRef]
  16. W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol.12, 974–980 (2001), doi:.
    [CrossRef]
  17. K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol.17(5), 1167–1172 (2006), doi:.
    [CrossRef]
  18. I. Latka, T. Habisreuther, and M. Zeisberger, “Fiber Bragg grating based spatially resolved characterization of flux-pinning-induced strain of disk-shaped bulk YBCO samples,” Cryogenics49(7), 340–345 (2009), doi:.
    [CrossRef]
  19. I. Latka, W. Ecke, B. Höfer, T. Habisreuther, and R. Willsch, “Fiber optic Bragg gratings as magnetic field-insensitive strain sensors for the surveillance of cryogenic devices,” Cryogenic49(9), 490–496 (2009), doi:.
    [CrossRef]
  20. http://www.chem.ualberta.ca/~mccreery/ramanmaterials.html
  21. E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett.9(4), 125–127 (1984).
    [CrossRef]
  22. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=618322 .
    [CrossRef]
  23. http://www.comsol.com
  24. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt.23(24), 4486–4493 (1984), doi:.
    [CrossRef] [PubMed]
  25. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH Verlag GmbH & Co. KGaA, 2004), Chap. 14.
  26. K. Schuster, K. Gerth, J. Kirchhof, J. Kobelke, “Verfahren zur Herstellung von strukturhomogenen mikrooptischen Fasern,“ Institut für physikalische Hochtechnologie e.V., DE102004059868B3 (2006).
  27. H. Bartelt, K. Schuster, S. Unger, C. Chojetzki, M. W. Rothhardt, and I. Latka, “Single-pulse fiber Bragg gratings and specific coatings for use at elevated temperatures,” Appl. Opt.46(17), 3417–3424 (2007).
    [CrossRef] [PubMed]
  28. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express16(23), 19169–19178 (2008).
    [CrossRef] [PubMed]
  29. E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelength in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008), doi:.
    [CrossRef]
  30. M. W. Rothhardt, C. Chojetzki, and H. R. Mueller, “High-mechanical strength single-pulse draw tower gratings,” Proc. SPIE5579, 127–135 (2004).
    [CrossRef]
  31. V. Mizrahi and J. E. Sipe, “Optical Properties of Photosensitive Fiber Phase Gratings,” J. Lightwave Technol.11(10), 1513–1517 (1993).
    [CrossRef]
  32. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997), http://link.aip.org/link/RSINAK/v68/i12/p4309/s1&Agg=doi .
    [CrossRef]
  33. I. Latka, S. Dochow, C. Krafft, B. Dietzek, H. Bartelt, and J. Popp, “Development of a fiber-based Raman probe for clinical diagnostics,” Proc. SPIE8087, 80872D, 80872D-8 (2011).
    [CrossRef]
  34. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber optic remote Raman probe designs. Part I: Model for liquids and transparent solids,” Appl. Spectrosc.50(7), 836–848 (1996).
    [CrossRef]
  35. C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Lond.)130(7), 1070–1077 (2005).
    [CrossRef] [PubMed]
  36. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett.31(12), 1911–1913 (2006).
    [CrossRef] [PubMed]
  37. K. M. Tan, G. P. Singh, C. S. Herrington, and C. T. A. Brown, “Near-infrared Raman spectroscopy using hollow-core photonic bandgap fibers,” Opt. Commun.283(16), 3204–3206 (2010).
    [CrossRef]
  38. M. Abtahi, A. D. Simard, S. Doucet, S. LaRochelle, and L. A. Rusch, “Characterization of a linearly chirped FBG under local temperature variations for spectral shaping applications,” J. Lightwave Technol.29(5), 750–755 (2011).
    [CrossRef]
  39. O. Frazão, M. Melo, P. V. S. Marques, and J. L. Santos, “Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination,” Meas. Sci. Technol.16(4), 984–988 (2005), doi:.
    [CrossRef]

2012 (1)

C. Krafft, S. Dochow, I. Latka, B. Dietzek, and J. Popp, “Diagnosis and Screening of Cancer Tissues by fiber optic probe Raman spectroscopy,” Biomed. Spectrosc. Imaging1, 39–55 (2012), doi:.
[CrossRef]

2011 (4)

Q. Tu and C. Chang, “Diagnostic applications of Raman spectroscopy,” Nanomed.- Nanotechnology8, 545–558 (2011), doi:.
[CrossRef]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
[CrossRef] [PubMed]

I. Latka, S. Dochow, C. Krafft, B. Dietzek, H. Bartelt, and J. Popp, “Development of a fiber-based Raman probe for clinical diagnostics,” Proc. SPIE8087, 80872D, 80872D-8 (2011).
[CrossRef]

M. Abtahi, A. D. Simard, S. Doucet, S. LaRochelle, and L. A. Rusch, “Characterization of a linearly chirped FBG under local temperature variations for spectral shaping applications,” J. Lightwave Technol.29(5), 750–755 (2011).
[CrossRef]

2010 (1)

K. M. Tan, G. P. Singh, C. S. Herrington, and C. T. A. Brown, “Near-infrared Raman spectroscopy using hollow-core photonic bandgap fibers,” Opt. Commun.283(16), 3204–3206 (2010).
[CrossRef]

2009 (6)

C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Lond.)134(6), 1046–1057 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19475129 .
[CrossRef] [PubMed]

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19343682 .
[CrossRef] [PubMed]

Y. Komachi, T. Katagiri, H. Sato, and H. Tashiro, “Improvement and analysis of a micro Raman probe,” Appl. Opt.48(9), 1683–1696 (2009), doi:.
[CrossRef] [PubMed]

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem.394(7), 1761–1774 (2009), http://www.springerlink.com/content/51k1n72204m22153/ .
[CrossRef] [PubMed]

I. Latka, T. Habisreuther, and M. Zeisberger, “Fiber Bragg grating based spatially resolved characterization of flux-pinning-induced strain of disk-shaped bulk YBCO samples,” Cryogenics49(7), 340–345 (2009), doi:.
[CrossRef]

I. Latka, W. Ecke, B. Höfer, T. Habisreuther, and R. Willsch, “Fiber optic Bragg gratings as magnetic field-insensitive strain sensors for the surveillance of cryogenic devices,” Cryogenic49(9), 490–496 (2009), doi:.
[CrossRef]

2008 (2)

M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express16(23), 19169–19178 (2008).
[CrossRef] [PubMed]

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelength in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008), doi:.
[CrossRef]

2007 (1)

2006 (2)

S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett.31(12), 1911–1913 (2006).
[CrossRef] [PubMed]

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol.17(5), 1167–1172 (2006), doi:.
[CrossRef]

2005 (3)

Y. Komachi, H. Sato, K. Aizawa, and H. Tashiro, “Micro-optical fiber probe for use in an intravascular Raman endoscope,” Appl. Opt.44(22), 4722–4732 (2005), doi:.
[CrossRef] [PubMed]

C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Lond.)130(7), 1070–1077 (2005).
[CrossRef] [PubMed]

O. Frazão, M. Melo, P. V. S. Marques, and J. L. Santos, “Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination,” Meas. Sci. Technol.16(4), 984–988 (2005), doi:.
[CrossRef]

2004 (2)

2003 (1)

I. A. Boere, T. C. Bakker Schut, J. van Den Boogert, R. W. F. de Bruin, and G. J. Puppels, “Use of fibre optic probes for detection of Barrett’s epithelium in the rat oesophagus by Raman spectroscopy,” Vib. Spectrosc.32(1), 47–55 (2003), doi:.
[CrossRef]

2001 (2)

Z. Huang, H. Zeng, I. Hamzavi, D. I. McLean, and H. Lui, “Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements,” Opt. Lett.26(22), 1782–1784 (2001).
[CrossRef] [PubMed]

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol.12, 974–980 (2001), doi:.
[CrossRef]

1997 (3)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618377 .
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=618322 .
[CrossRef]

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997), http://link.aip.org/link/RSINAK/v68/i12/p4309/s1&Agg=doi .
[CrossRef]

1996 (1)

1993 (1)

V. Mizrahi and J. E. Sipe, “Optical Properties of Photosensitive Fiber Phase Gratings,” J. Lightwave Technol.11(10), 1513–1517 (1993).
[CrossRef]

1984 (2)

Abtahi, M.

Addison, C. J.

Aizawa, K.

Akimov, D.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
[CrossRef] [PubMed]

Angel, S. M.

Apitz, J.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol.17(5), 1167–1172 (2006), doi:.
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618377 .
[CrossRef]

Bakker Schut, T. C.

I. A. Boere, T. C. Bakker Schut, J. van Den Boogert, R. W. F. de Bruin, and G. J. Puppels, “Use of fibre optic probes for detection of Barrett’s epithelium in the rat oesophagus by Raman spectroscopy,” Vib. Spectrosc.32(1), 47–55 (2003), doi:.
[CrossRef]

Bartelt, H.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, H. Bartelt, and J. Popp, “Development of a fiber-based Raman probe for clinical diagnostics,” Proc. SPIE8087, 80872D, 80872D-8 (2011).
[CrossRef]

M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express16(23), 19169–19178 (2008).
[CrossRef] [PubMed]

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelength in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008), doi:.
[CrossRef]

H. Bartelt, K. Schuster, S. Unger, C. Chojetzki, M. W. Rothhardt, and I. Latka, “Single-pulse fiber Bragg gratings and specific coatings for use at elevated temperatures,” Appl. Opt.46(17), 3417–3424 (2007).
[CrossRef] [PubMed]

Becker, M.

M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express16(23), 19169–19178 (2008).
[CrossRef] [PubMed]

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelength in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008), doi:.
[CrossRef]

Beleites, C.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19343682 .
[CrossRef] [PubMed]

Bergmann, J.

Bergner, N.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
[CrossRef] [PubMed]

Bielecki, C.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
[CrossRef] [PubMed]

Blades, M. W.

Boere, I. A.

I. A. Boere, T. C. Bakker Schut, J. van Den Boogert, R. W. F. de Bruin, and G. J. Puppels, “Use of fibre optic probes for detection of Barrett’s epithelium in the rat oesophagus by Raman spectroscopy,” Vib. Spectrosc.32(1), 47–55 (2003), doi:.
[CrossRef]

Brown, C. T. A.

K. M. Tan, G. P. Singh, C. S. Herrington, and C. T. A. Brown, “Near-infrared Raman spectroscopy using hollow-core photonic bandgap fibers,” Opt. Commun.283(16), 3204–3206 (2010).
[CrossRef]

Brückner, S.

Chang, C.

Q. Tu and C. Chang, “Diagnostic applications of Raman spectroscopy,” Nanomed.- Nanotechnology8, 545–558 (2011), doi:.
[CrossRef]

Chojetzki, C.

Cooney, T. F.

Dasari, R. R.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618377 .
[CrossRef]

de Bruin, R. W. F.

I. A. Boere, T. C. Bakker Schut, J. van Den Boogert, R. W. F. de Bruin, and G. J. Puppels, “Use of fibre optic probes for detection of Barrett’s epithelium in the rat oesophagus by Raman spectroscopy,” Vib. Spectrosc.32(1), 47–55 (2003), doi:.
[CrossRef]

Dietzek, B.

C. Krafft, S. Dochow, I. Latka, B. Dietzek, and J. Popp, “Diagnosis and Screening of Cancer Tissues by fiber optic probe Raman spectroscopy,” Biomed. Spectrosc. Imaging1, 39–55 (2012), doi:.
[CrossRef]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
[CrossRef] [PubMed]

I. Latka, S. Dochow, C. Krafft, B. Dietzek, H. Bartelt, and J. Popp, “Development of a fiber-based Raman probe for clinical diagnostics,” Proc. SPIE8087, 80872D, 80872D-8 (2011).
[CrossRef]

C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Lond.)134(6), 1046–1057 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19475129 .
[CrossRef] [PubMed]

Dochow, S.

C. Krafft, S. Dochow, I. Latka, B. Dietzek, and J. Popp, “Diagnosis and Screening of Cancer Tissues by fiber optic probe Raman spectroscopy,” Biomed. Spectrosc. Imaging1, 39–55 (2012), doi:.
[CrossRef]

I. Latka, S. Dochow, C. Krafft, B. Dietzek, H. Bartelt, and J. Popp, “Development of a fiber-based Raman probe for clinical diagnostics,” Proc. SPIE8087, 80872D, 80872D-8 (2011).
[CrossRef]

Doucet, S.

Ecke, W.

I. Latka, W. Ecke, B. Höfer, T. Habisreuther, and R. Willsch, “Fiber optic Bragg gratings as magnetic field-insensitive strain sensors for the surveillance of cryogenic devices,” Cryogenic49(9), 490–496 (2009), doi:.
[CrossRef]

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol.17(5), 1167–1172 (2006), doi:.
[CrossRef]

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol.12, 974–980 (2001), doi:.
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=618322 .
[CrossRef]

Feld, M. S.

Fleming, J. W.

Franke, M.

Frazão, O.

O. Frazão, M. Melo, P. V. S. Marques, and J. L. Santos, “Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination,” Meas. Sci. Technol.16(4), 984–988 (2005), doi:.
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618377 .
[CrossRef]

Galindo, L. H.

Gardecki, J. A.

Graue, R.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol.12, 974–980 (2001), doi:.
[CrossRef]

Habisreuther, T.

I. Latka, T. Habisreuther, and M. Zeisberger, “Fiber Bragg grating based spatially resolved characterization of flux-pinning-induced strain of disk-shaped bulk YBCO samples,” Cryogenics49(7), 340–345 (2009), doi:.
[CrossRef]

I. Latka, W. Ecke, B. Höfer, T. Habisreuther, and R. Willsch, “Fiber optic Bragg gratings as magnetic field-insensitive strain sensors for the surveillance of cryogenic devices,” Cryogenic49(9), 490–496 (2009), doi:.
[CrossRef]

Hamzavi, I.

Herrington, C. S.

K. M. Tan, G. P. Singh, C. S. Herrington, and C. T. A. Brown, “Near-infrared Raman spectroscopy using hollow-core photonic bandgap fibers,” Opt. Commun.283(16), 3204–3206 (2010).
[CrossRef]

Höfer, B.

I. Latka, W. Ecke, B. Höfer, T. Habisreuther, and R. Willsch, “Fiber optic Bragg gratings as magnetic field-insensitive strain sensors for the surveillance of cryogenic devices,” Cryogenic49(9), 490–496 (2009), doi:.
[CrossRef]

Huang, Z.

Hunter, M.

Kalff, R.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
[CrossRef] [PubMed]

Kapon, E.

Katagiri, T.

Katz, J.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618377 .
[CrossRef]

Komachi, Y.

Konorov, S. O.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618377 .
[CrossRef]

Krafft, C.

C. Krafft, S. Dochow, I. Latka, B. Dietzek, and J. Popp, “Diagnosis and Screening of Cancer Tissues by fiber optic probe Raman spectroscopy,” Biomed. Spectrosc. Imaging1, 39–55 (2012), doi:.
[CrossRef]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
[CrossRef] [PubMed]

I. Latka, S. Dochow, C. Krafft, B. Dietzek, H. Bartelt, and J. Popp, “Development of a fiber-based Raman probe for clinical diagnostics,” Proc. SPIE8087, 80872D, 80872D-8 (2011).
[CrossRef]

C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Lond.)134(6), 1046–1057 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19475129 .
[CrossRef] [PubMed]

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19343682 .
[CrossRef] [PubMed]

C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Lond.)130(7), 1070–1077 (2005).
[CrossRef] [PubMed]

Kramer, J. R.

LaRochelle, S.

Latka, I.

C. Krafft, S. Dochow, I. Latka, B. Dietzek, and J. Popp, “Diagnosis and Screening of Cancer Tissues by fiber optic probe Raman spectroscopy,” Biomed. Spectrosc. Imaging1, 39–55 (2012), doi:.
[CrossRef]

I. Latka, S. Dochow, C. Krafft, B. Dietzek, H. Bartelt, and J. Popp, “Development of a fiber-based Raman probe for clinical diagnostics,” Proc. SPIE8087, 80872D, 80872D-8 (2011).
[CrossRef]

I. Latka, T. Habisreuther, and M. Zeisberger, “Fiber Bragg grating based spatially resolved characterization of flux-pinning-induced strain of disk-shaped bulk YBCO samples,” Cryogenics49(7), 340–345 (2009), doi:.
[CrossRef]

I. Latka, W. Ecke, B. Höfer, T. Habisreuther, and R. Willsch, “Fiber optic Bragg gratings as magnetic field-insensitive strain sensors for the surveillance of cryogenic devices,” Cryogenic49(9), 490–496 (2009), doi:.
[CrossRef]

H. Bartelt, K. Schuster, S. Unger, C. Chojetzki, M. W. Rothhardt, and I. Latka, “Single-pulse fiber Bragg gratings and specific coatings for use at elevated temperatures,” Appl. Opt.46(17), 3417–3424 (2007).
[CrossRef] [PubMed]

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol.12, 974–980 (2001), doi:.
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618377 .
[CrossRef]

Lembke, E.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol.17(5), 1167–1172 (2006), doi:.
[CrossRef]

Lenschow, G.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol.17(5), 1167–1172 (2006), doi:.
[CrossRef]

Lindner, E.

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelength in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008), doi:.
[CrossRef]

M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express16(23), 19169–19178 (2008).
[CrossRef] [PubMed]

Lui, H.

Marques, P. V. S.

O. Frazão, M. Melo, P. V. S. Marques, and J. L. Santos, “Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination,” Meas. Sci. Technol.16(4), 984–988 (2005), doi:.
[CrossRef]

McLean, D. I.

Melo, M.

O. Frazão, M. Melo, P. V. S. Marques, and J. L. Santos, “Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination,” Meas. Sci. Technol.16(4), 984–988 (2005), doi:.
[CrossRef]

Meyer, T.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
[CrossRef] [PubMed]

Mizrahi, V.

V. Mizrahi and J. E. Sipe, “Optical Properties of Photosensitive Fiber Phase Gratings,” J. Lightwave Technol.11(10), 1513–1517 (1993).
[CrossRef]

Motz, J. T.

Mueller, H. R.

M. W. Rothhardt, C. Chojetzki, and H. R. Mueller, “High-mechanical strength single-pulse draw tower gratings,” Proc. SPIE5579, 127–135 (2004).
[CrossRef]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997), http://link.aip.org/link/RSINAK/v68/i12/p4309/s1&Agg=doi .
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618377 .
[CrossRef]

Popp, J.

C. Krafft, S. Dochow, I. Latka, B. Dietzek, and J. Popp, “Diagnosis and Screening of Cancer Tissues by fiber optic probe Raman spectroscopy,” Biomed. Spectrosc. Imaging1, 39–55 (2012), doi:.
[CrossRef]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
[CrossRef] [PubMed]

I. Latka, S. Dochow, C. Krafft, B. Dietzek, H. Bartelt, and J. Popp, “Development of a fiber-based Raman probe for clinical diagnostics,” Proc. SPIE8087, 80872D, 80872D-8 (2011).
[CrossRef]

C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Lond.)134(6), 1046–1057 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19475129 .
[CrossRef] [PubMed]

Puppels, G. J.

I. A. Boere, T. C. Bakker Schut, J. van Den Boogert, R. W. F. de Bruin, and G. J. Puppels, “Use of fibre optic probes for detection of Barrett’s epithelium in the rat oesophagus by Raman spectroscopy,” Vib. Spectrosc.32(1), 47–55 (2003), doi:.
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618377 .
[CrossRef]

Reichart, R.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
[CrossRef] [PubMed]

Reutlinger, A.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol.12, 974–980 (2001), doi:.
[CrossRef]

Romeike, B. F. M.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
[CrossRef] [PubMed]

Rothhardt, M.

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelength in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008), doi:.
[CrossRef]

Rothhardt, M. W.

Rusch, L. A.

Salzer, R.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19343682 .
[CrossRef] [PubMed]

C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Lond.)130(7), 1070–1077 (2005).
[CrossRef] [PubMed]

Santos, J. L.

O. Frazão, M. Melo, P. V. S. Marques, and J. L. Santos, “Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination,” Meas. Sci. Technol.16(4), 984–988 (2005), doi:.
[CrossRef]

Sato, H.

Schackert, G.

C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Lond.)130(7), 1070–1077 (2005).
[CrossRef] [PubMed]

Schroeder, K.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol.17(5), 1167–1172 (2006), doi:.
[CrossRef]

Schulze, H. G.

Schuster, K.

Simard, A. D.

Singh, G. P.

K. M. Tan, G. P. Singh, C. S. Herrington, and C. T. A. Brown, “Near-infrared Raman spectroscopy using hollow-core photonic bandgap fibers,” Opt. Commun.283(16), 3204–3206 (2010).
[CrossRef]

Sipe, J. E.

V. Mizrahi and J. E. Sipe, “Optical Properties of Photosensitive Fiber Phase Gratings,” J. Lightwave Technol.11(10), 1513–1517 (1993).
[CrossRef]

Skinner, H. T.

Sobottka, S. B.

C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Lond.)130(7), 1070–1077 (2005).
[CrossRef] [PubMed]

Steiner, G.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19343682 .
[CrossRef] [PubMed]

Stoddart, P. R.

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem.394(7), 1761–1774 (2009), http://www.springerlink.com/content/51k1n72204m22153/ .
[CrossRef] [PubMed]

Tan, K. M.

K. M. Tan, G. P. Singh, C. S. Herrington, and C. T. A. Brown, “Near-infrared Raman spectroscopy using hollow-core photonic bandgap fibers,” Opt. Commun.283(16), 3204–3206 (2010).
[CrossRef]

Tashiro, H.

Tu, Q.

Q. Tu and C. Chang, “Diagnostic applications of Raman spectroscopy,” Nanomed.- Nanotechnology8, 545–558 (2011), doi:.
[CrossRef]

Turner, R. F. B.

Unger, S.

van Den Boogert, J.

I. A. Boere, T. C. Bakker Schut, J. van Den Boogert, R. W. F. de Bruin, and G. J. Puppels, “Use of fibre optic probes for detection of Barrett’s epithelium in the rat oesophagus by Raman spectroscopy,” Vib. Spectrosc.32(1), 47–55 (2003), doi:.
[CrossRef]

White, D. J.

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem.394(7), 1761–1774 (2009), http://www.springerlink.com/content/51k1n72204m22153/ .
[CrossRef] [PubMed]

Willsch, R.

I. Latka, W. Ecke, B. Höfer, T. Habisreuther, and R. Willsch, “Fiber optic Bragg gratings as magnetic field-insensitive strain sensors for the surveillance of cryogenic devices,” Cryogenic49(9), 490–496 (2009), doi:.
[CrossRef]

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol.12, 974–980 (2001), doi:.
[CrossRef]

Yariv, A.

Zeisberger, M.

I. Latka, T. Habisreuther, and M. Zeisberger, “Fiber Bragg grating based spatially resolved characterization of flux-pinning-induced strain of disk-shaped bulk YBCO samples,” Cryogenics49(7), 340–345 (2009), doi:.
[CrossRef]

Zeng, H.

Anal. Bioanal. Chem. (1)

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem.394(7), 1761–1774 (2009), http://www.springerlink.com/content/51k1n72204m22153/ .
[CrossRef] [PubMed]

Analyst (Lond.) (2)

C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Lond.)134(6), 1046–1057 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19475129 .
[CrossRef] [PubMed]

C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Lond.)130(7), 1070–1077 (2005).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Spectrosc. (1)

Biomed. Spectrosc. Imaging (1)

C. Krafft, S. Dochow, I. Latka, B. Dietzek, and J. Popp, “Diagnosis and Screening of Cancer Tissues by fiber optic probe Raman spectroscopy,” Biomed. Spectrosc. Imaging1, 39–55 (2012), doi:.
[CrossRef]

Cryogenic (1)

I. Latka, W. Ecke, B. Höfer, T. Habisreuther, and R. Willsch, “Fiber optic Bragg gratings as magnetic field-insensitive strain sensors for the surveillance of cryogenic devices,” Cryogenic49(9), 490–496 (2009), doi:.
[CrossRef]

Cryogenics (1)

I. Latka, T. Habisreuther, and M. Zeisberger, “Fiber Bragg grating based spatially resolved characterization of flux-pinning-induced strain of disk-shaped bulk YBCO samples,” Cryogenics49(7), 340–345 (2009), doi:.
[CrossRef]

J Biophotonics (1)

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19343682 .
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:.
[CrossRef] [PubMed]

J. Lightwave Technol. (4)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618377 .
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=618322 .
[CrossRef]

V. Mizrahi and J. E. Sipe, “Optical Properties of Photosensitive Fiber Phase Gratings,” J. Lightwave Technol.11(10), 1513–1517 (1993).
[CrossRef]

M. Abtahi, A. D. Simard, S. Doucet, S. LaRochelle, and L. A. Rusch, “Characterization of a linearly chirped FBG under local temperature variations for spectral shaping applications,” J. Lightwave Technol.29(5), 750–755 (2011).
[CrossRef]

Meas. Sci. Technol. (3)

O. Frazão, M. Melo, P. V. S. Marques, and J. L. Santos, “Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination,” Meas. Sci. Technol.16(4), 984–988 (2005), doi:.
[CrossRef]

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol.12, 974–980 (2001), doi:.
[CrossRef]

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol.17(5), 1167–1172 (2006), doi:.
[CrossRef]

Nanomed.- Nanotechnology (1)

Q. Tu and C. Chang, “Diagnostic applications of Raman spectroscopy,” Nanomed.- Nanotechnology8, 545–558 (2011), doi:.
[CrossRef]

Opt. Commun. (2)

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelength in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008), doi:.
[CrossRef]

K. M. Tan, G. P. Singh, C. S. Herrington, and C. T. A. Brown, “Near-infrared Raman spectroscopy using hollow-core photonic bandgap fibers,” Opt. Commun.283(16), 3204–3206 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (2)

I. Latka, S. Dochow, C. Krafft, B. Dietzek, H. Bartelt, and J. Popp, “Development of a fiber-based Raman probe for clinical diagnostics,” Proc. SPIE8087, 80872D, 80872D-8 (2011).
[CrossRef]

M. W. Rothhardt, C. Chojetzki, and H. R. Mueller, “High-mechanical strength single-pulse draw tower gratings,” Proc. SPIE5579, 127–135 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997), http://link.aip.org/link/RSINAK/v68/i12/p4309/s1&Agg=doi .
[CrossRef]

Vib. Spectrosc. (1)

I. A. Boere, T. C. Bakker Schut, J. van Den Boogert, R. W. F. de Bruin, and G. J. Puppels, “Use of fibre optic probes for detection of Barrett’s epithelium in the rat oesophagus by Raman spectroscopy,” Vib. Spectrosc.32(1), 47–55 (2003), doi:.
[CrossRef]

Other (7)

A. Glebov, O. Mokhun, V. Smirnov, L. Glebov, B. Roussel, H.-J. Reich, and F. Adar, “Novel volume Bragg grating notch filters for ultralow-frequency Raman measurements,” (2010), http://www.optigrate.com/ .

M. J. Pelletier, “Fiber optic probe with integral optical filtering”, Kaiser Optical Systems, Inc., US 5,862,273 (1999).

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618320 .

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH Verlag GmbH & Co. KGaA, 2004), Chap. 14.

K. Schuster, K. Gerth, J. Kirchhof, J. Kobelke, “Verfahren zur Herstellung von strukturhomogenen mikrooptischen Fasern,“ Institut für physikalische Hochtechnologie e.V., DE102004059868B3 (2006).

http://www.comsol.com

http://www.chem.ualberta.ca/~mccreery/ramanmaterials.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Raman spectra of cyclohexane acquired with a six-around-one Raman probe using SMFs for collection, 200 mW @ 785 nm (b): Comparison of the Raman background of a SM fibers of 1 m length, with (black line) and without (red line) an inscribed Bragg grating. The excitation light was directly coupled into one fiber end and the transmitted light was collected and analyzed. The diagram is plotted in logarithmic scale.

Fig. 2
Fig. 2

Schematic cross section of a MCSMF

Fig. 3
Fig. 3

Resolution of degeneracy of neff (left scale) and the spectral broadening (right scale) due to mode coupling in a 19-core fiber for d = 4, 5, 6 and 7 µm. The V-parameter of all cores is 2.405 at the operation wavelength of 785 nm. The vertical blue show the position of the 0.1 nm wavelength splitting.

Fig. 4
Fig. 4

Phase diagram resulting from the simulations shown in Fig. 3. The area above the black line represents the fiber parameters which result in a wavelength splitting Δλ<0.1 nm, while the red shaded area below corresponds to combinations of d and Λ with Δλ>0.1 nm.

Fig. 5
Fig. 5

(a) SEM image of the 19 core MCSMF with labeled core diameters; (b) Attenuation plot. The cutoff wavelength was determined by bending the fiber with a diameter of 4 cm. The 0.1 dB level of the bending loss is defined as the cutoff wavelength.

Fig. 6
Fig. 6

Transmission spectrum of a FBG in a MCSMF

Fig. 7
Fig. 7

Front face of the assembled fiber probe; six MCSMF around one multimode excitation fiber (AFS105)

Fig. 8
Fig. 8

Schematic presentation of the measurement setup.

Fig. 9
Fig. 9

Distance dependency of the assembled probe. (a): spectra of polystyrene at different distances to the sample. (b) total peak height at several wavenumbers for determination of optimal probe distance.

Fig. 10
Fig. 10

(a) Raman spectra acquired with a long-pass and or a short-pass filter as reflector / sample, integration time: 10 s; (b) comparison of polystyrene spectra, measured with the Raman microscope (green curve) or with the fiber optic probe (blue curve), silica bands removed by subtracting the Raman spectrum of a silica sample

Fig. 11
Fig. 11

Non-corrected Raman spectra of porcine brain acquired with the MCSMF- Raman – probe with 30 s and 10 s of acquisition times.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ B =2 n eff Λ B
α n = 1 n dn dT
α Λ = 1 Λ B d Λ B dT .
Ω=4π sin 2 θ 4
V= π λ d n 1 2 n 2 2 <2.405
λ B (k,m) =( n ef (k) + n eff (k) ) Λ B ,
M= i=1 N i
n 1 = n 2 2 + ( V * λ πd ) 2

Metrics