Abstract

In a typical auto-stereoscopic three-dimensional display, the parallax barrier or lenticular lens is located in front of the display device. However, in a projection-type auto-stereoscopic display, such optical components make it difficult to display elemental images on the screen or to reconstruct a three-dimensional image, even though a projection-type display has many advantages. Therefore, it is necessary to use a rear projection technique in a projection-type auto-stereoscopic display, despite the fact that this is an inefficient use of space. We propose here a frontal projection-type auto-stereoscopic display by using a polarizer and a quarter-wave retarding film. Since the proposed method uses a frontal projection scheme and passive polarizing components, it has the advantage of being both space saving and cost effective. This is the first report that describes a frontal projection-type auto-stereoscopic display based on a parallax barrier and integral imaging by using a projector. Experimental results that support the proposed method are provided.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B.-W. Lee, I.-H. Ji, S. M. Han, S.-D. Sung, K.-S. Shin, J.-D. Lee, B. H. Kim, B. H. Berkeley, and S. S. Kim, “Novel simultaneous emission driving scheme for crosstalk-free 3D AMOLED TV,” SID Int. Symp. Digest Tech. Papers 41, 758–761 (2010).
  2. H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010).
  3. S. B. Steinman, B. A. Steinman, and R. P. Garzia, Foundations of Binocular Vision: A Clinical Perspective (McGraw-Hill, 2000), Chap. 7.
  4. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express12(6), 1067–1076 (2004).
    [CrossRef] [PubMed]
  5. J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp.17(5), 411–418 (2009).
    [CrossRef]
  6. J. Arai, M. Okui, T. Yamashita, and F. Okano, “Integral three-dimensional television using a 2000-scanning-line video system,” Appl. Opt.45(8), 1704–1712 (2006).
    [CrossRef] [PubMed]
  7. Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt.50(7), B18–B24 (2011).
    [CrossRef] [PubMed]
  8. D.-Q. Pham, N. Kim, K.-C. Kwon, J.-H. Jung, K. Hong, B. Lee, and J.-H. Park, “Depth enhancement of integral imaging by using polymer-dispersed liquid-crystal films and a dual-depth configuration,” Opt. Lett.35(18), 3135–3137 (2010).
    [CrossRef] [PubMed]
  9. Y. Jeong, S. Jung, J.-H. Park, and B. Lee, “Reflection-type integral imaging scheme for displaying three-dimensional images,” Opt. Lett.27(9), 704–706 (2002).
    [CrossRef] [PubMed]
  10. J.-S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express12(6), 1077–1083 (2004).
    [CrossRef] [PubMed]
  11. Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt.48(34), H71–H76 (2009).
    [CrossRef] [PubMed]
  12. J. Hong, Y. Kim, S. G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express18(20), 20628–20637 (2010).
    [CrossRef] [PubMed]
  13. W. Jang, Y. W. Lee, J. Oh, and Y. W. Lee, “Inline conversion between transmission and reflection spectra of fiber Bragg grating using polarization-diversity loop structure,” IEEE Photon. Technol. Lett.22(20), 1473–1475 (2010).
    [CrossRef]
  14. H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express14(12), 5183–5190 (2006).
    [CrossRef] [PubMed]
  15. A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50(3), 034004 (2011).
    [CrossRef]
  16. P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am.72(4), 507–513 (1982).
    [CrossRef]
  17. J. Poirson, T. Lanternier, J.-C. Cotteverte, A. L. Floch, and F. Bretenaker, “Jones matrices of a quarter-wave plate for Gaussian beams,” Appl. Opt.34(30), 6806–6818 (1995).
    [CrossRef] [PubMed]
  18. Y. Kim, K. Hong, J. Yeom, J. Hong, and B. Lee, “Optical block module for auto-stereoscopic three-dimensional display,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest, DSu1C (Optical Society of America, 2012).
  19. J. Flack, J. Harrold, and G. J. Woodgate, “A prototype 3D mobile phone equipped with a next-generation auto-stereoscopic display,” Proc. SPIE6490, 1–12 (2007).
  20. J. Harrold, D. Wilkes, and G. J. Woodgate, “Switchable 2D/3D display––solid phase liquid crystal microlens array,” Proc. IDW 11, 1495–1496 (2004).

2011 (2)

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50(3), 034004 (2011).
[CrossRef]

Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt.50(7), B18–B24 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (2)

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp.17(5), 411–418 (2009).
[CrossRef]

Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt.48(34), H71–H76 (2009).
[CrossRef] [PubMed]

2007 (1)

J. Flack, J. Harrold, and G. J. Woodgate, “A prototype 3D mobile phone equipped with a next-generation auto-stereoscopic display,” Proc. SPIE6490, 1–12 (2007).

2006 (2)

2004 (2)

2002 (1)

1995 (1)

1982 (1)

Arai, J.

Bhattacharya, K.

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50(3), 034004 (2011).
[CrossRef]

Bretenaker, F.

Chakraborty, A. K.

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50(3), 034004 (2011).
[CrossRef]

Cho, S.-W.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp.17(5), 411–418 (2009).
[CrossRef]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express14(12), 5183–5190 (2006).
[CrossRef] [PubMed]

Choi, H.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp.17(5), 411–418 (2009).
[CrossRef]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express14(12), 5183–5190 (2006).
[CrossRef] [PubMed]

Cotteverte, J.-C.

Dohi, T.

Flack, J.

J. Flack, J. Harrold, and G. J. Woodgate, “A prototype 3D mobile phone equipped with a next-generation auto-stereoscopic display,” Proc. SPIE6490, 1–12 (2007).

Floch, A. L.

Harrold, J.

J. Flack, J. Harrold, and G. J. Woodgate, “A prototype 3D mobile phone equipped with a next-generation auto-stereoscopic display,” Proc. SPIE6490, 1–12 (2007).

Hata, N.

Hong, J.

Hong, J.-H.

Hong, K.

Iwahara, M.

Jang, J.-S.

Jang, W.

W. Jang, Y. W. Lee, J. Oh, and Y. W. Lee, “Inline conversion between transmission and reflection spectra of fiber Bragg grating using polarization-diversity loop structure,” IEEE Photon. Technol. Lett.22(20), 1473–1475 (2010).
[CrossRef]

Javidi, B.

Jeong, Y.

Jung, J.-H.

Jung, S.

Kim, J.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp.17(5), 411–418 (2009).
[CrossRef]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express14(12), 5183–5190 (2006).
[CrossRef] [PubMed]

Kim, N.

Kim, Y.

Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt.50(7), B18–B24 (2011).
[CrossRef] [PubMed]

J. Hong, Y. Kim, S. G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express18(20), 20628–20637 (2010).
[CrossRef] [PubMed]

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp.17(5), 411–418 (2009).
[CrossRef]

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp.17(5), 411–418 (2009).
[CrossRef]

Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt.48(34), H71–H76 (2009).
[CrossRef] [PubMed]

Kwon, K.-C.

Lanternier, T.

Lee, B.

Lee, S.-D.

Lee, Y. W.

W. Jang, Y. W. Lee, J. Oh, and Y. W. Lee, “Inline conversion between transmission and reflection spectra of fiber Bragg grating using polarization-diversity loop structure,” IEEE Photon. Technol. Lett.22(20), 1473–1475 (2010).
[CrossRef]

W. Jang, Y. W. Lee, J. Oh, and Y. W. Lee, “Inline conversion between transmission and reflection spectra of fiber Bragg grating using polarization-diversity loop structure,” IEEE Photon. Technol. Lett.22(20), 1473–1475 (2010).
[CrossRef]

Liao, H.

Min, S.-W.

Oh, J.

W. Jang, Y. W. Lee, J. Oh, and Y. W. Lee, “Inline conversion between transmission and reflection spectra of fiber Bragg grating using polarization-diversity loop structure,” IEEE Photon. Technol. Lett.22(20), 1473–1475 (2010).
[CrossRef]

Okano, F.

Okui, M.

Park, G.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp.17(5), 411–418 (2009).
[CrossRef]

Park, J.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp.17(5), 411–418 (2009).
[CrossRef]

Park, J.-H.

Park, S. G.

Pham, D.-Q.

Poirson, J.

Saha, A.

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50(3), 034004 (2011).
[CrossRef]

Woodgate, G. J.

J. Flack, J. Harrold, and G. J. Woodgate, “A prototype 3D mobile phone equipped with a next-generation auto-stereoscopic display,” Proc. SPIE6490, 1–12 (2007).

Yamashita, T.

Yeh, P.

Appl. Opt. (4)

IEEE Photon. Technol. Lett. (1)

W. Jang, Y. W. Lee, J. Oh, and Y. W. Lee, “Inline conversion between transmission and reflection spectra of fiber Bragg grating using polarization-diversity loop structure,” IEEE Photon. Technol. Lett.22(20), 1473–1475 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Soc. Inf. Disp. (1)

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp.17(5), 411–418 (2009).
[CrossRef]

Opt. Eng. (1)

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50(3), 034004 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (1)

J. Flack, J. Harrold, and G. J. Woodgate, “A prototype 3D mobile phone equipped with a next-generation auto-stereoscopic display,” Proc. SPIE6490, 1–12 (2007).

Other (5)

J. Harrold, D. Wilkes, and G. J. Woodgate, “Switchable 2D/3D display––solid phase liquid crystal microlens array,” Proc. IDW 11, 1495–1496 (2004).

Y. Kim, K. Hong, J. Yeom, J. Hong, and B. Lee, “Optical block module for auto-stereoscopic three-dimensional display,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest, DSu1C (Optical Society of America, 2012).

B.-W. Lee, I.-H. Ji, S. M. Han, S.-D. Sung, K.-S. Shin, J.-D. Lee, B. H. Kim, B. H. Berkeley, and S. S. Kim, “Novel simultaneous emission driving scheme for crosstalk-free 3D AMOLED TV,” SID Int. Symp. Digest Tech. Papers 41, 758–761 (2010).

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010).

S. B. Steinman, B. A. Steinman, and R. P. Garzia, Foundations of Binocular Vision: A Clinical Perspective (McGraw-Hill, 2000), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Two representative projection-type 3D displays: (a) the polarizing glasses method and (b) the parallax barrier method.

Fig. 2
Fig. 2

Concept of the proposed configuration.

Fig. 3
Fig. 3

Path of light propagation in the proposed method.

Fig. 4
Fig. 4

Principle of image formation of the proposed method in detail.

Fig. 5
Fig. 5

Application of the proposed method for the integral imaging.

Fig. 6
Fig. 6

Simulation configuration for verifying the proposed method.

Fig. 7
Fig. 7

Transmission ratio on the observation plane along the horizontal direction. The transmission ratio was observed at the observation plane along the lateral direction.

Fig. 8
Fig. 8

Experimental results for (a) the parallax barrier polarizer, (b) integral imaging by using pinhole array method, (c) photo of the elemental image captured behind the screen, and (d) experimental setup of the proposed method.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

T POL  or  T PB =[ 0 0 0 1 ] ( T M =[ 1 0 0 1 ] ),
T QWP (φ)=[ cosφ sinφ sinφ cosφ ][ exp(jτ/2) 0 0 exp(jτ/2) ][ cosφ sinφ sinφ cosφ ],
T S = T PB T QWP (45°) T M T QWP (45°) T PB T POL ,
( A x ' A y ' )=( t x ' 0 0 t y ' )( cosψ sinψ sinψ cosψ )( P 11 P 12 P 21 P 22 )( cosψ sinψ sinψ cosψ )( t x 0 0 t y )( A x A y ) = T o R(ψ)PR(ψ) T i ( A x A y ),
t x = 2ncosθ ncosθ+ n 0 cos θ 0 ,
t y = 2ncosθ ncos θ 0 + n 0 cosθ ,
t x '= 2 n 0 cos θ 0 n 0 cos θ 0 +ncosθ ,
t y '= 2 n 0 cos θ 0 n 0 cosθ+ncos θ 0 ,
cosψ= cos θ 0 sinϕ 1 sin 2 θ 0 sin 2 ϕ ,
( A x ' A y ' )= T o R( ψ QWP ) P QWP R( ψ QWP ) T i ( A x A y ),
( A x ' A y ' )= T o R( ψ POL ) P POL R( ψ POL ) T i ( A x A y ).

Metrics