Abstract

In recent years, displays and lighting require color temperature (CT) conversion function because observers have different preferences. This paper proposes effective methods to determine the optimal converting point of CT conversion for display and lighting application. For display application, the concepts of center of gravity and isotemperature line are applied to determine the optimal converting point. The maximal enhancement of luminance between the optimal and average is 18%. For lighting application, this paper proposes two methods to determine the optimal converting point in the CT quadrangle which complies with ANSI C78. 377. The enhancement of luminance in two CT modes (5700K and 6500K) are 14.2% and 23.6%, respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Borbély, A. Sámson, and J. Schanda, “The concept of correlated colour temperature revisited,” Color Res. Appl.26(6), 450–457 (2001).
    [CrossRef]
  2. K. L. Kelley, “Lines of constant correlated color temperature based on MacAdam’s (u,v) uniform chromaticity transformation of the CIE diagram,” J. Opt. Soc. Am.53(8), 999–1002 (1963).
    [CrossRef]
  3. A. R. Robertson, “Computation of correlated color temperature and distribution temperature,” J. Opt. Soc. Am.58(11), 1528–1535 (1968).
    [CrossRef]
  4. D. B. Judd, “Estimation of chromaticity differences and nearest color temperature on the standard 1931 ICI colorimetric coordinate system,” J. Opt. Soc. Am.26(11), 421–424 (1936).
    [CrossRef]
  5. J. Schanda and M. Danyi, “Correlated color-temperature calculations in the CIE 1976 chromaticity diagram,” Color Res. Appl.2(4), 161–163 (1977).
    [CrossRef]
  6. M. Krystek, “An algorithm to calculate correlated colour temperature,” Color Res. Appl.10(1), 38–40 (1985).
    [CrossRef]
  7. Q. Xingzhong, “Formulas for computing correlated color temperature,” Color Res. Appl.12(5), 285–287 (1987).
    [CrossRef]
  8. C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl.17(2), 142–144 (1992).
    [CrossRef]
  9. M. Ou-Yang and S. W. Huang, “Determination of gamut boundary description for multi-primary color displays,” Opt. Express15(20), 13388–13403 (2007).
    [CrossRef] [PubMed]
  10. S. Wen, “Design of relative primary luminances for four-primary displays,” Displays26(4–5), 171–176 (2005).
    [CrossRef]
  11. L. Honam, C. Hyungjin, L. Bonggeun, P. Sewoong, and K. Bongsoon, “One-dimensional conversion of color temperature in perceived illumination,” IEEE Trans. Consum. Electron.47(3), 340–346 (2001).
    [CrossRef]
  12. D. S. Park, S. K. Kim, C. Y. Kim, W. H. Choi, S. D. Lee, and Y. S. Seo, “User-preferred color temperature conversion for video on TV or PC,” Proc. SPIE5008, 285–293 (2003).
    [CrossRef]
  13. S. K. Kim, D. S. Park, W. H. Choi, and S. D. Lee, “Color temperature conversion for video on TV or PC reflecting human's display preference tendency,” in Proceedings of IEEE Conference on Convergence Information Technology (Institute of Electrical and Electronics Engineers, Gyeongju, 2007), pp. 861–867.
  14. ANSI_NEMA_ANSLG C78.377–2008.
  15. M. Ou-Yang and S. W. Huang, “Design considerations between color gamut and brightness for multi-primary color displays,” J. Display Technol.3(1), 71–82 (2007).
    [CrossRef]
  16. R. W. G. Hunt and M. R. Pointer, Measuring Colour (Willey, 2011).

2007 (2)

2005 (1)

S. Wen, “Design of relative primary luminances for four-primary displays,” Displays26(4–5), 171–176 (2005).
[CrossRef]

2003 (1)

D. S. Park, S. K. Kim, C. Y. Kim, W. H. Choi, S. D. Lee, and Y. S. Seo, “User-preferred color temperature conversion for video on TV or PC,” Proc. SPIE5008, 285–293 (2003).
[CrossRef]

2001 (2)

L. Honam, C. Hyungjin, L. Bonggeun, P. Sewoong, and K. Bongsoon, “One-dimensional conversion of color temperature in perceived illumination,” IEEE Trans. Consum. Electron.47(3), 340–346 (2001).
[CrossRef]

A. Borbély, A. Sámson, and J. Schanda, “The concept of correlated colour temperature revisited,” Color Res. Appl.26(6), 450–457 (2001).
[CrossRef]

1992 (1)

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl.17(2), 142–144 (1992).
[CrossRef]

1987 (1)

Q. Xingzhong, “Formulas for computing correlated color temperature,” Color Res. Appl.12(5), 285–287 (1987).
[CrossRef]

1985 (1)

M. Krystek, “An algorithm to calculate correlated colour temperature,” Color Res. Appl.10(1), 38–40 (1985).
[CrossRef]

1977 (1)

J. Schanda and M. Danyi, “Correlated color-temperature calculations in the CIE 1976 chromaticity diagram,” Color Res. Appl.2(4), 161–163 (1977).
[CrossRef]

1968 (1)

1963 (1)

1936 (1)

Bonggeun, L.

L. Honam, C. Hyungjin, L. Bonggeun, P. Sewoong, and K. Bongsoon, “One-dimensional conversion of color temperature in perceived illumination,” IEEE Trans. Consum. Electron.47(3), 340–346 (2001).
[CrossRef]

Bongsoon, K.

L. Honam, C. Hyungjin, L. Bonggeun, P. Sewoong, and K. Bongsoon, “One-dimensional conversion of color temperature in perceived illumination,” IEEE Trans. Consum. Electron.47(3), 340–346 (2001).
[CrossRef]

Borbély, A.

A. Borbély, A. Sámson, and J. Schanda, “The concept of correlated colour temperature revisited,” Color Res. Appl.26(6), 450–457 (2001).
[CrossRef]

Choi, W. H.

D. S. Park, S. K. Kim, C. Y. Kim, W. H. Choi, S. D. Lee, and Y. S. Seo, “User-preferred color temperature conversion for video on TV or PC,” Proc. SPIE5008, 285–293 (2003).
[CrossRef]

Danyi, M.

J. Schanda and M. Danyi, “Correlated color-temperature calculations in the CIE 1976 chromaticity diagram,” Color Res. Appl.2(4), 161–163 (1977).
[CrossRef]

Honam, L.

L. Honam, C. Hyungjin, L. Bonggeun, P. Sewoong, and K. Bongsoon, “One-dimensional conversion of color temperature in perceived illumination,” IEEE Trans. Consum. Electron.47(3), 340–346 (2001).
[CrossRef]

Huang, S. W.

Hyungjin, C.

L. Honam, C. Hyungjin, L. Bonggeun, P. Sewoong, and K. Bongsoon, “One-dimensional conversion of color temperature in perceived illumination,” IEEE Trans. Consum. Electron.47(3), 340–346 (2001).
[CrossRef]

Judd, D. B.

Kelley, K. L.

Kim, C. Y.

D. S. Park, S. K. Kim, C. Y. Kim, W. H. Choi, S. D. Lee, and Y. S. Seo, “User-preferred color temperature conversion for video on TV or PC,” Proc. SPIE5008, 285–293 (2003).
[CrossRef]

Kim, S. K.

D. S. Park, S. K. Kim, C. Y. Kim, W. H. Choi, S. D. Lee, and Y. S. Seo, “User-preferred color temperature conversion for video on TV or PC,” Proc. SPIE5008, 285–293 (2003).
[CrossRef]

Krystek, M.

M. Krystek, “An algorithm to calculate correlated colour temperature,” Color Res. Appl.10(1), 38–40 (1985).
[CrossRef]

Lee, S. D.

D. S. Park, S. K. Kim, C. Y. Kim, W. H. Choi, S. D. Lee, and Y. S. Seo, “User-preferred color temperature conversion for video on TV or PC,” Proc. SPIE5008, 285–293 (2003).
[CrossRef]

McCamy, C. S.

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl.17(2), 142–144 (1992).
[CrossRef]

Ou-Yang, M.

Park, D. S.

D. S. Park, S. K. Kim, C. Y. Kim, W. H. Choi, S. D. Lee, and Y. S. Seo, “User-preferred color temperature conversion for video on TV or PC,” Proc. SPIE5008, 285–293 (2003).
[CrossRef]

Robertson, A. R.

Sámson, A.

A. Borbély, A. Sámson, and J. Schanda, “The concept of correlated colour temperature revisited,” Color Res. Appl.26(6), 450–457 (2001).
[CrossRef]

Schanda, J.

A. Borbély, A. Sámson, and J. Schanda, “The concept of correlated colour temperature revisited,” Color Res. Appl.26(6), 450–457 (2001).
[CrossRef]

J. Schanda and M. Danyi, “Correlated color-temperature calculations in the CIE 1976 chromaticity diagram,” Color Res. Appl.2(4), 161–163 (1977).
[CrossRef]

Seo, Y. S.

D. S. Park, S. K. Kim, C. Y. Kim, W. H. Choi, S. D. Lee, and Y. S. Seo, “User-preferred color temperature conversion for video on TV or PC,” Proc. SPIE5008, 285–293 (2003).
[CrossRef]

Sewoong, P.

L. Honam, C. Hyungjin, L. Bonggeun, P. Sewoong, and K. Bongsoon, “One-dimensional conversion of color temperature in perceived illumination,” IEEE Trans. Consum. Electron.47(3), 340–346 (2001).
[CrossRef]

Wen, S.

S. Wen, “Design of relative primary luminances for four-primary displays,” Displays26(4–5), 171–176 (2005).
[CrossRef]

Xingzhong, Q.

Q. Xingzhong, “Formulas for computing correlated color temperature,” Color Res. Appl.12(5), 285–287 (1987).
[CrossRef]

Color Res. Appl. (5)

A. Borbély, A. Sámson, and J. Schanda, “The concept of correlated colour temperature revisited,” Color Res. Appl.26(6), 450–457 (2001).
[CrossRef]

J. Schanda and M. Danyi, “Correlated color-temperature calculations in the CIE 1976 chromaticity diagram,” Color Res. Appl.2(4), 161–163 (1977).
[CrossRef]

M. Krystek, “An algorithm to calculate correlated colour temperature,” Color Res. Appl.10(1), 38–40 (1985).
[CrossRef]

Q. Xingzhong, “Formulas for computing correlated color temperature,” Color Res. Appl.12(5), 285–287 (1987).
[CrossRef]

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl.17(2), 142–144 (1992).
[CrossRef]

Displays (1)

S. Wen, “Design of relative primary luminances for four-primary displays,” Displays26(4–5), 171–176 (2005).
[CrossRef]

IEEE Trans. Consum. Electron. (1)

L. Honam, C. Hyungjin, L. Bonggeun, P. Sewoong, and K. Bongsoon, “One-dimensional conversion of color temperature in perceived illumination,” IEEE Trans. Consum. Electron.47(3), 340–346 (2001).
[CrossRef]

J. Display Technol. (1)

J. Opt. Soc. Am. (3)

Opt. Express (1)

Proc. SPIE (1)

D. S. Park, S. K. Kim, C. Y. Kim, W. H. Choi, S. D. Lee, and Y. S. Seo, “User-preferred color temperature conversion for video on TV or PC,” Proc. SPIE5008, 285–293 (2003).
[CrossRef]

Other (3)

S. K. Kim, D. S. Park, W. H. Choi, and S. D. Lee, “Color temperature conversion for video on TV or PC reflecting human's display preference tendency,” in Proceedings of IEEE Conference on Convergence Information Technology (Institute of Electrical and Electronics Engineers, Gyeongju, 2007), pp. 861–867.

ANSI_NEMA_ANSLG C78.377–2008.

R. W. G. Hunt and M. R. Pointer, Measuring Colour (Willey, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The schematic of the determination of optimal converting point of target CT. The point c is the optimal converting point which is also the intersection between the isotemperature line of target CT and line of center of gravity RG.

Fig. 2
Fig. 2

The color gamut boundary of tri-primary colors divides into three zones, and the luminance combination of three zones is shown.

Fig. 3
Fig. 3

The optimal converting points of the CT quadrangle A and CT quadrangle B. (a) The point c is the optimal converting point of CT quadrangle A. The point d is the optimal converting point of CT quadrangle B. (b) The local magnified picture of (a) explains that c is the optimal converting point of quadrangle A.

Fig. 4
Fig. 4

(a) The variation of luminance and chromaticity coordinates of the 31 simulated points on isotemperature line of all target CTs. The black solid circles and hollow circles individual represent the optimal converting points and worst points of each target CT. (b) The luminance of optimal converting points, worst points, and average value of each target CT. (c) The enhancement of luminance of three useful target CTs.

Fig. 5
Fig. 5

(a) The eight CT quadrangles in the u’v’ chromaticity coordinate. (b) The variation of luminance of 5700K CT quadrangle. (c) The variation of luminance of 6500K CT quadrangle.

Fig. 6
Fig. 6

(a) The setup of experiment. (b) The results of experiment on 6500K isotemperature line.

Tables (2)

Tables Icon

Table 1 The simulated results of three usually used CT modes of display

Tables Icon

Table 2 The experimental results of chromaticity coordinates and luminous flux on 6500K isotemperature line

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

v'= m i (v ' i v ' k )+ m j (v ' j v ' k ) m i (u ' i u ' k )+ m j (u ' j u ' k ) u'+ m i (u ' i v ' k u ' k v ' i )+ m j (u ' j v ' k u ' k v ' j ) m i (u ' i u ' k )+ m j (u ' j u ' k ) ,
437 N 3 +3601 N 2 +6831N+(5517T)=0,
v'= 0.2787N1.752 1.7432N+1.328 u'+ 0.5574N+0.996 1.7432N+1.328 ,
Y G = u ' W u ' B v ' B ( Y R,MAX v ' W v ' R v ' R ) v ' W v ' B v ' B ( Y R,MAX u ' W u ' R v ' R ) u ' W u ' G v ' G × v ' W v ' B v ' B u ' W u ' B v ' B × v ' W v ' G v ' G ,
Y B = u ' W u ' G v ' G ( Y R,MAX v ' W v ' R v ' R ) v ' W v ' G v ' G ( Y R,MAX u ' W u ' R v ' R ) u ' W u ' B v ' B × v ' W v ' G v ' G u ' W u ' G v ' G × v ' W v ' B v ' B ,
Y m = u ' W u ' n v ' n ( Y l,MAX u ' W u ' l v ' l ) v ' W v ' n v ' n ( Y l,MAX u ' W u ' l v ' l ) u ' W u ' m v ' m × v ' W v ' n v ' n u ' W u ' n v ' n × v ' W v ' m v ' m ,
Y n = u ' W u ' m v ' m ( Y l,MAX u ' W u ' l v ' l ) v ' W v ' m v ' m ( Y l,MAX u ' W u ' l v ' l ) u ' W u ' n v ' n × v ' W v ' m v ' m u ' W u ' m v ' m × v ' W v ' n v ' n .

Metrics