Abstract

In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs) with approximate 300 MHz linewidth are used as transmitters and local oscillators for coherent detection of optical DP-QPSK signals. The proposed system, with central wavelength at 1540.68 nm, operates at 40 Gb/s over 80 km single mode fiber (SMF) as part of a passive optical network (PON). The deployment of pilot-tone-aided PNC algorithm guarantees a bit error rate (BER) performance below the forward error correction (FEC) threshold. Moreover, we also evaluate a novel digital signal processing (DSP) algorithm for adaptive pilot tone detection.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. de Waardt “111-Gb/s PolMux-quadurature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technology Letter.22, 751–753 (2010).
    [CrossRef]
  2. X. Zhou and J. Yu, “Advanced coherent modulation formats and algorithms: higher-order multi-level coding for high-capacity system based on 100 Gbps channel,” Conference on Optical Fiber Communication (OFC), (2010).
  3. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (John Wiley & Sons, Inc., 2002).
    [CrossRef]
  4. M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” Conference on Optical Fiber Communication (OFC) (2008).
  5. J. K. Cavers, “An analysis of pilot symbol assisted modulation for rayleigh fading channels,” IEEE Trans. Veh. Technol.40, 686–693 (1991).
    [CrossRef]
  6. A. Spalvieri and L. Barletta, “Pilot-aided carrier recovery in the presence of phase noise,” IEEE Trans. Commun.59, 1966–1974 (2011).
    [CrossRef]
  7. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26, 6–15 (2008).
    [CrossRef]
  8. S.-Yuep Kim, N. Sakurai, H. Kimura, and H. Hadama, “VCSEL-based coherent detection of 10-Gbits/s QPSK signals using digital phase noise cancellation for future optical access systems,” Conference on Optical Fiber Communication (OFC) (2010), paper OMK6.
  9. R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “All-VCSEL based on digital coherent detection link for multi Gb/s WDM passive optical networks,” Opt. Express.18, 24969–24974 (2010).
    [CrossRef] [PubMed]
  10. M. H. Morsy-Osaman, L. R. Chen, and D. V. Plant, “Joint mitigation of laser phase noise and fiber nonlinearity using pilot-aided transmission for single-carrier systems,” European Conference and Exhibition on Optical Communication (ECOC) (2011), paper Tu.3.A.3.

2011 (1)

A. Spalvieri and L. Barletta, “Pilot-aided carrier recovery in the presence of phase noise,” IEEE Trans. Commun.59, 1966–1974 (2011).
[CrossRef]

2010 (2)

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “All-VCSEL based on digital coherent detection link for multi Gb/s WDM passive optical networks,” Opt. Express.18, 24969–24974 (2010).
[CrossRef] [PubMed]

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. de Waardt “111-Gb/s PolMux-quadurature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technology Letter.22, 751–753 (2010).
[CrossRef]

2008 (1)

1991 (1)

J. K. Cavers, “An analysis of pilot symbol assisted modulation for rayleigh fading channels,” IEEE Trans. Veh. Technol.40, 686–693 (1991).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (John Wiley & Sons, Inc., 2002).
[CrossRef]

Alfiad, M. S.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. de Waardt “111-Gb/s PolMux-quadurature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technology Letter.22, 751–753 (2010).
[CrossRef]

Barletta, L.

A. Spalvieri and L. Barletta, “Pilot-aided carrier recovery in the presence of phase noise,” IEEE Trans. Commun.59, 1966–1974 (2011).
[CrossRef]

Cavers, J. K.

J. K. Cavers, “An analysis of pilot symbol assisted modulation for rayleigh fading channels,” IEEE Trans. Veh. Technol.40, 686–693 (1991).
[CrossRef]

Chen, L. R.

M. H. Morsy-Osaman, L. R. Chen, and D. V. Plant, “Joint mitigation of laser phase noise and fiber nonlinearity using pilot-aided transmission for single-carrier systems,” European Conference and Exhibition on Optical Communication (ECOC) (2011), paper Tu.3.A.3.

de Waardt, H.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. de Waardt “111-Gb/s PolMux-quadurature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technology Letter.22, 751–753 (2010).
[CrossRef]

Hadama, H.

S.-Yuep Kim, N. Sakurai, H. Kimura, and H. Hadama, “VCSEL-based coherent detection of 10-Gbits/s QPSK signals using digital phase noise cancellation for future optical access systems,” Conference on Optical Fiber Communication (OFC) (2010), paper OMK6.

Hanik, N.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. de Waardt “111-Gb/s PolMux-quadurature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technology Letter.22, 751–753 (2010).
[CrossRef]

Jansen, S. L.

Jensen, J. B.

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “All-VCSEL based on digital coherent detection link for multi Gb/s WDM passive optical networks,” Opt. Express.18, 24969–24974 (2010).
[CrossRef] [PubMed]

Kim, S.-Yuep

S.-Yuep Kim, N. Sakurai, H. Kimura, and H. Hadama, “VCSEL-based coherent detection of 10-Gbits/s QPSK signals using digital phase noise cancellation for future optical access systems,” Conference on Optical Fiber Communication (OFC) (2010), paper OMK6.

Kimura, H.

S.-Yuep Kim, N. Sakurai, H. Kimura, and H. Hadama, “VCSEL-based coherent detection of 10-Gbits/s QPSK signals using digital phase noise cancellation for future optical access systems,” Conference on Optical Fiber Communication (OFC) (2010), paper OMK6.

Kuschnerov, M.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. de Waardt “111-Gb/s PolMux-quadurature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technology Letter.22, 751–753 (2010).
[CrossRef]

Machi, F.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. de Waardt “111-Gb/s PolMux-quadurature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technology Letter.22, 751–753 (2010).
[CrossRef]

Monroy, I. T.

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “All-VCSEL based on digital coherent detection link for multi Gb/s WDM passive optical networks,” Opt. Express.18, 24969–24974 (2010).
[CrossRef] [PubMed]

Morita, I.

Morsy-Osaman, M. H.

M. H. Morsy-Osaman, L. R. Chen, and D. V. Plant, “Joint mitigation of laser phase noise and fiber nonlinearity using pilot-aided transmission for single-carrier systems,” European Conference and Exhibition on Optical Communication (ECOC) (2011), paper Tu.3.A.3.

Neumeyr, C.

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “All-VCSEL based on digital coherent detection link for multi Gb/s WDM passive optical networks,” Opt. Express.18, 24969–24974 (2010).
[CrossRef] [PubMed]

Ortsiefer, M.

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “All-VCSEL based on digital coherent detection link for multi Gb/s WDM passive optical networks,” Opt. Express.18, 24969–24974 (2010).
[CrossRef] [PubMed]

Plant, D. V.

M. H. Morsy-Osaman, L. R. Chen, and D. V. Plant, “Joint mitigation of laser phase noise and fiber nonlinearity using pilot-aided transmission for single-carrier systems,” European Conference and Exhibition on Optical Communication (ECOC) (2011), paper Tu.3.A.3.

Rodes, R.

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “All-VCSEL based on digital coherent detection link for multi Gb/s WDM passive optical networks,” Opt. Express.18, 24969–24974 (2010).
[CrossRef] [PubMed]

Roenneberg, E.

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “All-VCSEL based on digital coherent detection link for multi Gb/s WDM passive optical networks,” Opt. Express.18, 24969–24974 (2010).
[CrossRef] [PubMed]

Rosskopf, J.

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “All-VCSEL based on digital coherent detection link for multi Gb/s WDM passive optical networks,” Opt. Express.18, 24969–24974 (2010).
[CrossRef] [PubMed]

Sakurai, N.

S.-Yuep Kim, N. Sakurai, H. Kimura, and H. Hadama, “VCSEL-based coherent detection of 10-Gbits/s QPSK signals using digital phase noise cancellation for future optical access systems,” Conference on Optical Fiber Communication (OFC) (2010), paper OMK6.

Schenk, T. C. W.

Seimetz, M.

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” Conference on Optical Fiber Communication (OFC) (2008).

Spalvieri, A.

A. Spalvieri and L. Barletta, “Pilot-aided carrier recovery in the presence of phase noise,” IEEE Trans. Commun.59, 1966–1974 (2011).
[CrossRef]

Takeda, N.

Tanaka, H.

van den Borne, D.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. de Waardt “111-Gb/s PolMux-quadurature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technology Letter.22, 751–753 (2010).
[CrossRef]

Wuth, T.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. de Waardt “111-Gb/s PolMux-quadurature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technology Letter.22, 751–753 (2010).
[CrossRef]

Yu, J.

X. Zhou and J. Yu, “Advanced coherent modulation formats and algorithms: higher-order multi-level coding for high-capacity system based on 100 Gbps channel,” Conference on Optical Fiber Communication (OFC), (2010).

Zhou, X.

X. Zhou and J. Yu, “Advanced coherent modulation formats and algorithms: higher-order multi-level coding for high-capacity system based on 100 Gbps channel,” Conference on Optical Fiber Communication (OFC), (2010).

Zibar, D.

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “All-VCSEL based on digital coherent detection link for multi Gb/s WDM passive optical networks,” Opt. Express.18, 24969–24974 (2010).
[CrossRef] [PubMed]

IEEE Photon. Technology Letter. (1)

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. de Waardt “111-Gb/s PolMux-quadurature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technology Letter.22, 751–753 (2010).
[CrossRef]

IEEE Trans. Commun. (1)

A. Spalvieri and L. Barletta, “Pilot-aided carrier recovery in the presence of phase noise,” IEEE Trans. Commun.59, 1966–1974 (2011).
[CrossRef]

IEEE Trans. Veh. Technol. (1)

J. K. Cavers, “An analysis of pilot symbol assisted modulation for rayleigh fading channels,” IEEE Trans. Veh. Technol.40, 686–693 (1991).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express. (1)

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “All-VCSEL based on digital coherent detection link for multi Gb/s WDM passive optical networks,” Opt. Express.18, 24969–24974 (2010).
[CrossRef] [PubMed]

Other (5)

M. H. Morsy-Osaman, L. R. Chen, and D. V. Plant, “Joint mitigation of laser phase noise and fiber nonlinearity using pilot-aided transmission for single-carrier systems,” European Conference and Exhibition on Optical Communication (ECOC) (2011), paper Tu.3.A.3.

S.-Yuep Kim, N. Sakurai, H. Kimura, and H. Hadama, “VCSEL-based coherent detection of 10-Gbits/s QPSK signals using digital phase noise cancellation for future optical access systems,” Conference on Optical Fiber Communication (OFC) (2010), paper OMK6.

X. Zhou and J. Yu, “Advanced coherent modulation formats and algorithms: higher-order multi-level coding for high-capacity system based on 100 Gbps channel,” Conference on Optical Fiber Communication (OFC), (2010).

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (John Wiley & Sons, Inc., 2002).
[CrossRef]

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” Conference on Optical Fiber Communication (OFC) (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Pilot-tone-aided PNC using adaptive pilot tone detection schematic (see Eq. (4)(10) for more details). ADC: analogue to digital converter; DPLL: digital phase lock loop; LPF: low pass filter; τ: delay line; FIR: finite impulse response equalizer.

Fig. 2
Fig. 2

Pilot-tone-aided PNC experiment setup. PPG: pulse pattern generator; PBS: polarization beam splitter; PBC: polarization beam combiner; EDFA: erbium-doped optical fiber amplifier; SMF: single-mode fiber; OBPF: optical band pass filter.

Fig. 3
Fig. 3

Pilot-tone-aided PNC experiment results: (a) phase tracking results (D=1); (b) constellation of two orthogonally polarized received signal: output using Vibterbi-Viterbi and pilot-tone-aided PNC.

Fig. 4
Fig. 4

Bit-error ratio (BER) performance of pilot-tone-aided PNC: (a) simulation results of BER in terms of single laser linewidth (OSNR=13 dB); (b) experiment BER results.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E s ( t ) = [ A I ( t ) + i A Q ( t ) ] exp [ i ( ω s t + ϕ s ) ] ,
E L O ( t ) = A L O ( t ) exp [ i ( ω L O t + ϕ L O ) ] ,
E p ( t ) = A p ( t ) exp [ i ( ω s t ω p t + ϕ p ) ] + A p ( t ) exp [ i ( ω s t + ω p t + ϕ p ) ] ,
E o ( t ) = E R exp [ i ( Δ ω t + ω p t + Δ ϕ ) ] + E R exp [ i ( Δ ω t ω p t + Δ ϕ ) ] E A exp [ i ( Δ ω t + Δ ϕ ) ] ,
E R = 8 E p ( t ) E L O ( t ) , Δ ω ω s ω L O , and E A = E L O ( t ) [ A I ( t ) + i A Q ( t ) ] .
[ Δ ϕ Δ ϕ ] = [ ϕ s ϕ L O + ϕ n ϕ p ϕ L O + ϕ n ' ] ,
E o ' ( k ) = E o ( k ) exp [ i Δ ω ( k ) ] .
E p ' ( k ) = n = 0 N 1 h ( n ) E o ( k n D ) , ( k = 1 , 2 , ; n = 0 , 1 , 2 , , N 1 ) ,
h k ( n ) = h k 1 ( n ) + e ( k ) E o ( k n D ) , ( k = 1 , 2 , ; n = 0 , 1 , 2 , , N 1 ) .
E P N C ( k ) = E A ( k ) exp [ i Δ ϕ ] exp ( i Δ ϕ ) ,
E P N C ( k ) = E A ( k ) .

Metrics