Abstract

The transmission through ultra-thin metal films is noticeable and thus limits their potential for the formation of lithographic masks. By sub-wavelength patterning of a metal film with a post structure, a resonant metamaterial is formed, which can effectively suppress the transmission. Measurements as well as calculations identify the width of the metal islands as a critical geometrical feature. Hence, the extraordinarily low transmission effect can be explained by the resonant response of single scatterers known as Localized Surface Plasmon Resonances (LSPR). A potential application of this suppressed transmission effect to thin metal masks in optical lithography is experimentally investigated.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
    [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
    [CrossRef]
  4. F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
    [CrossRef]
  5. J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B89, 517–520 (2007).
    [CrossRef]
  6. P. Banzer, J. Kindler, S. Quabis, U. Peschel, and G. Leuchs, “Extraordinary transmission through a single coaxial aperture in a thin metal film,” Opt. Express18, 10896–10904 (2010).
    [CrossRef] [PubMed]
  7. I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
    [CrossRef]
  8. D. Reibold, F. Shao, A. Erdmann, and U. Peschel, “Extraordinary low transmission effects for ultra-thin patterned metal films,” Opt. Express17, 544–551 (2009).
    [CrossRef] [PubMed]
  9. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
    [CrossRef]
  10. S. Xiao and N. A. Mortensen, “Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays,” Opt. Lett.36, 37–39 (2011).
    [CrossRef] [PubMed]
  11. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
    [CrossRef] [PubMed]
  12. P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
    [CrossRef]
  13. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express18, 10905–10923 (2010).
    [CrossRef] [PubMed]
  14. D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010).
    [CrossRef]
  15. R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).
  16. J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1, 1221–1227 (2010).
    [CrossRef]

2012 (1)

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

2011 (2)

S. Xiao and N. A. Mortensen, “Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays,” Opt. Lett.36, 37–39 (2011).
[CrossRef] [PubMed]

P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
[CrossRef]

2010 (6)

D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010).
[CrossRef]

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1, 1221–1227 (2010).
[CrossRef]

P. Banzer, J. Kindler, S. Quabis, U. Peschel, and G. Leuchs, “Extraordinary transmission through a single coaxial aperture in a thin metal film,” Opt. Express18, 10896–10904 (2010).
[CrossRef] [PubMed]

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express18, 10905–10923 (2010).
[CrossRef] [PubMed]

2009 (3)

D. Reibold, F. Shao, A. Erdmann, and U. Peschel, “Extraordinary low transmission effects for ultra-thin patterned metal films,” Opt. Express17, 544–551 (2009).
[CrossRef] [PubMed]

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
[CrossRef]

2007 (3)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B89, 517–520 (2007).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Alù, A.

P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
[CrossRef]

Banzer, P.

Bezuglyi, E. V.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

Bramati, A.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Braun, J.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
[CrossRef]

Brunner, T.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Deschner, R.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Dressel, M.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Erdmann, A.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

D. Reibold, F. Shao, A. Erdmann, and U. Peschel, “Extraordinary low transmission effects for ultra-thin patterned metal films,” Opt. Express17, 544–551 (2009).
[CrossRef] [PubMed]

Faure, T.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Fourkas, J. T.

J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1, 1221–1227 (2010).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Gompf, B.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
[CrossRef]

Halle, S.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Han, G.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Hibbs, M.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Hornung, M.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Ivinskaya, A. M.

D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010).
[CrossRef]

Kats, A. V.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

Kikuchi, Y.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Kindler, J.

P. Banzer, J. Kindler, S. Quabis, U. Peschel, and G. Leuchs, “Extraordinary transmission through a single coaxial aperture in a thin metal film,” Opt. Express18, 10896–10904 (2010).
[CrossRef] [PubMed]

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B89, 517–520 (2007).
[CrossRef]

Kobiela, G.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Lavrinenko, A. V.

D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010).
[CrossRef]

Leuchs, G.

Levchenko, A.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Li, P.-C.

P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

McIntyre, G.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Morgenfeld, B.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Mortensen, N. A.

Motzek, K.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Nikitin, A. Y.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

Peschel, U.

Quabis, S.

Ramaswamy, S.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Reibold, D.

Shao, F.

Shyroki, D. M.

D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010).
[CrossRef]

Spevak, I. S.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

Stuerzebecher, L.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Tirapu-Azpiroz, J.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Voelkel, R.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Vogler, U.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Wagner, A.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Weichelt, T.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Xiao, S.

Yu, E. T.

P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
[CrossRef]

Zeitner, U. D.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Zhao, Y.

P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
[CrossRef]

Zoberbier, R.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Appl. Phys. B (1)

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B89, 517–520 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
[CrossRef]

IEEE Antennas Wireless Propag. Lett. (1)

D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS (1)

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

J. Phys. Chem. Lett. (1)

J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1, 1221–1227 (2010).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Rev. Mod. Phys. (2)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics