Abstract

The transmission through ultra-thin metal films is noticeable and thus limits their potential for the formation of lithographic masks. By sub-wavelength patterning of a metal film with a post structure, a resonant metamaterial is formed, which can effectively suppress the transmission. Measurements as well as calculations identify the width of the metal islands as a critical geometrical feature. Hence, the extraordinarily low transmission effect can be explained by the resonant response of single scatterers known as Localized Surface Plasmon Resonances (LSPR). A potential application of this suppressed transmission effect to thin metal masks in optical lithography is experimentally investigated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
    [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
    [CrossRef]
  4. F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
    [CrossRef]
  5. J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B89, 517–520 (2007).
    [CrossRef]
  6. P. Banzer, J. Kindler, S. Quabis, U. Peschel, and G. Leuchs, “Extraordinary transmission through a single coaxial aperture in a thin metal film,” Opt. Express18, 10896–10904 (2010).
    [CrossRef] [PubMed]
  7. I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
    [CrossRef]
  8. D. Reibold, F. Shao, A. Erdmann, and U. Peschel, “Extraordinary low transmission effects for ultra-thin patterned metal films,” Opt. Express17, 544–551 (2009).
    [CrossRef] [PubMed]
  9. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
    [CrossRef]
  10. S. Xiao and N. A. Mortensen, “Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays,” Opt. Lett.36, 37–39 (2011).
    [CrossRef] [PubMed]
  11. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
    [CrossRef] [PubMed]
  12. P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
    [CrossRef]
  13. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express18, 10905–10923 (2010).
    [CrossRef] [PubMed]
  14. D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010).
    [CrossRef]
  15. R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).
  16. J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1, 1221–1227 (2010).
    [CrossRef]

2012

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

2011

S. Xiao and N. A. Mortensen, “Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays,” Opt. Lett.36, 37–39 (2011).
[CrossRef] [PubMed]

P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
[CrossRef]

2010

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express18, 10905–10923 (2010).
[CrossRef] [PubMed]

D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010).
[CrossRef]

J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1, 1221–1227 (2010).
[CrossRef]

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

P. Banzer, J. Kindler, S. Quabis, U. Peschel, and G. Leuchs, “Extraordinary transmission through a single coaxial aperture in a thin metal film,” Opt. Express18, 10896–10904 (2010).
[CrossRef] [PubMed]

2009

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

D. Reibold, F. Shao, A. Erdmann, and U. Peschel, “Extraordinary low transmission effects for ultra-thin patterned metal films,” Opt. Express17, 544–551 (2009).
[CrossRef] [PubMed]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
[CrossRef]

2007

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B89, 517–520 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Alù, A.

P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
[CrossRef]

Banzer, P.

Bezuglyi, E. V.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

Bramati, A.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Braun, J.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
[CrossRef]

Brunner, T.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Deschner, R.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Dressel, M.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Erdmann, A.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

D. Reibold, F. Shao, A. Erdmann, and U. Peschel, “Extraordinary low transmission effects for ultra-thin patterned metal films,” Opt. Express17, 544–551 (2009).
[CrossRef] [PubMed]

Faure, T.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Fourkas, J. T.

J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1, 1221–1227 (2010).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Gompf, B.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
[CrossRef]

Halle, S.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Han, G.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Hibbs, M.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Hornung, M.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Ivinskaya, A. M.

D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010).
[CrossRef]

Kats, A. V.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

Kikuchi, Y.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Kindler, J.

P. Banzer, J. Kindler, S. Quabis, U. Peschel, and G. Leuchs, “Extraordinary transmission through a single coaxial aperture in a thin metal film,” Opt. Express18, 10896–10904 (2010).
[CrossRef] [PubMed]

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B89, 517–520 (2007).
[CrossRef]

Kobiela, G.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Lavrinenko, A. V.

D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010).
[CrossRef]

Leuchs, G.

Levchenko, A.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Li, P.-C.

P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

McIntyre, G.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Morgenfeld, B.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Mortensen, N. A.

Motzek, K.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Nikitin, A. Y.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

Peschel, U.

Quabis, S.

Ramaswamy, S.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Reibold, D.

Shao, F.

Shyroki, D. M.

D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010).
[CrossRef]

Spevak, I. S.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

Stuerzebecher, L.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Tirapu-Azpiroz, J.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Voelkel, R.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Vogler, U.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Wagner, A.

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

Weichelt, T.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Xiao, S.

Yu, E. T.

P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
[CrossRef]

Zeitner, U. D.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Zhao, Y.

P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
[CrossRef]

Zoberbier, R.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Appl. Phys. B

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B89, 517–520 (2007).
[CrossRef]

Appl. Phys. Lett.

P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011).
[CrossRef]

IEEE Antennas Wireless Propag. Lett.

D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS

G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).

J. Phys. Chem. Lett.

J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1, 1221–1227 (2010).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009).
[CrossRef]

Phys. Rev. Lett.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

Proc. SPIE

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).

Rev. Mod. Phys.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The experimental scanning setup (further addressed in the text) allows for measuring transmission and reflection simultaneously. The inset illustrates the post structure design with variable geometrical parameters (thickness of the Ag film d, width of the remaining quadratic Ag islands w, pitch of the stucture p) and the SEM image of a representative sample structure (indicated scale bar: 500 nm).

Fig. 2
Fig. 2

(a) Comparison of theoretical results and measurements of Trel calculated with Eq. (1) for a wavelength of 633 nm. The underlying colored plot shows the results of a simulation [8] whereas squares indicate measured values of Trel (same color code) for a 30 nm thick structure with the respective lateral geometrical parameters (measurement errors spitch = 10 nm, swidth = 10 nm).

Fig. 3
Fig. 3

Measured resonance curves for different structures of 30 nm thickness and with (a) constant width and (b) constant pitch for x-polarization. For the perpendicular polarization the resonance positions slightly differ due to fabrication discrepancies, but their dependence on the width also holds.

Fig. 4
Fig. 4

(a) Schematic drawing of the oblique incidence investigations for an array of posts with pitch p = 215 nm and width w = 160 nm. (b) The numerical results are illustrated in a dispersion diagram. Trel is plotted versus the wavevector k = 2π/λ and its x-component kx = 2π/λ sinθ in the plane of the posts structure (θ = 0° to 75°, λ = 300 to 1200 nm). The marked area indicates the experimentally accessible parameter range. (c) Oblique incidence measurements of Trel for the corresponding structure (θ = 0° to 60° in steps of 10°, λ = 470 to 720 nm). The colorcodes for Trel are scaled relative to the maximum measured values.

Fig. 5
Fig. 5

Transmission signals measured along cross-sections of mask structures. (left) Schematic drawing of a series of mask structures with an increasing number of posts (w = 120 nm, p = 190 nm) supporting a square opening 830 × 830 nm2. (middle) SEM pictures of mask structures (indicated scale bar: 1 μm) (right) Transmission signals along cross-sections of three square openings in a row, the corresponding contrast values C = I max I min I max + I min are indicated in the individual plots.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T rel = T Bulk T T Bulk + T ,
[ 2 z 2 + k 2 ] E ( z ) = μ 0 ω 2 P ( z ) ,
E ( z ) = E in e i k z μ 0 ω 2 d 2 i k P 0 e i k | z |
χ eff ( ω ) χ 0 τ ω 0 ω i τ ,
E in μ 0 ω 0 2 d 2 i k P 0 .
χ 0 2 k ( ω 0 ) d = λ π d .

Metrics