Abstract

We experimentally demonstrate that mid-link optical phase conjugation (OPC) effectively compensates fiber nonlinearity in coherent optical OFDM super-channels. The OPC was produced by pump × subcarrier degenerate four-wave-mixing in a 1-km highly nonlinear fiber. The nonlinear threshold for the 10 × 80-km 604.7-Gb/s 16-QAM test system was increased by 4.8 dB. The performance at the optimum power was only improved by 0.2 dB because the OPC module produces a 1.6 dB penalty for the back-to-back system. FWM theory shows that the ‘noise’ processes of OPC modules utilizing χ3 nonlinearities could be reduced by increasing the pump power, which will improve back-to-back performance with the OPC module.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
    [CrossRef] [PubMed]
  2. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express19(4), 3449–3454 (2011).
    [CrossRef] [PubMed]
  3. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol.26(20), 3416–3425 (2008).
    [CrossRef]
  4. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express16(2), 880–888 (2008).
    [CrossRef] [PubMed]
  5. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol.28(6), 939–951 (2010).
    [CrossRef]
  6. R. A. Fisher, B. R. Suydam, and D. Yevick, “Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects,” Opt. Lett.8(12), 611–613 (1983).
    [CrossRef] [PubMed]
  7. S. Watanabe and T. Chikama, “Cancellation of four-wave mixing in multichannel fibre transmission by midway optical phase conjugation,” Electron. Lett.30(14), 1156–1157 (1994).
    [CrossRef]
  8. S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” J. Lightwave Technol.24(1), 54–64 (2006).
    [CrossRef]
  9. P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express17(20), 17758–17763 (2009).
    [CrossRef] [PubMed]
  10. X. Liu, Y. Qiao, and Y. Ji, “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40 Gb/s CO-OFDM systems,” Opt. Commun.283(13), 2749–2753 (2010).
    [CrossRef]
  11. V. Pechenkin and I. J. Fair, “On Four-Wave Mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module,” J. Lightwave Technol.29(11), 1678–1690 (2011).
    [CrossRef]
  12. L. B. Du, M. M. Morshed, and A. J. Lowery, “604-Gb/s coherent optical OFDM over 800 km of S-SMF with mid-span spectral inversion,” in OptoElectronics and Communications Conference, (IEEE, 2012), SC2_1022.
  13. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
    [CrossRef]
  14. P. Minzioni, F. Alberti, and A. Schiffini, “Techniques for nonlinearity cancellation into embedded links by optical phase conjugation,” J. Lightwave Technol.23(8), 2364–2370 (2005).
    [CrossRef]
  15. A. J. Lowery, S. Wang, and M. Premaratne, “Calculation of power limit due to fiber nonlinearity in optical OFDM systems,” Opt. Express15(20), 13282–13287 (2007).
    [CrossRef] [PubMed]
  16. R. Elschner, T. Richter, and C. Schubert, “Characterization of FWM-induced crosstalk for WDM operation of a fiber-optical parametric amplifier,” in European Conference on Optical Communication, (OSA, 2011), Mo.1.A.2.
  17. N. E. Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron.18(2), 950–957 (2012).
    [CrossRef]

2012

N. E. Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron.18(2), 950–957 (2012).
[CrossRef]

2011

V. Pechenkin and I. J. Fair, “On Four-Wave Mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module,” J. Lightwave Technol.29(11), 1678–1690 (2011).
[CrossRef]

D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express19(4), 3449–3454 (2011).
[CrossRef] [PubMed]

2010

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol.28(6), 939–951 (2010).
[CrossRef]

X. Liu, Y. Qiao, and Y. Ji, “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40 Gb/s CO-OFDM systems,” Opt. Commun.283(13), 2749–2753 (2010).
[CrossRef]

2009

2008

2007

2006

2005

2001

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

1994

S. Watanabe and T. Chikama, “Cancellation of four-wave mixing in multichannel fibre transmission by midway optical phase conjugation,” Electron. Lett.30(14), 1156–1157 (1994).
[CrossRef]

1983

Alberti, F.

Boffi, P.

Calabro, S.

Chen, X.

Chikama, T.

S. Watanabe and T. Chikama, “Cancellation of four-wave mixing in multichannel fibre transmission by midway optical phase conjugation,” Electron. Lett.30(14), 1156–1157 (1994).
[CrossRef]

Cristiani, I.

Dahdah, N. E.

N. E. Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron.18(2), 950–957 (2012).
[CrossRef]

de Waardt, H.

Degiorgio, V.

Doran, N. J.

N. E. Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron.18(2), 950–957 (2012).
[CrossRef]

Ellis, A. D.

Fair, I. J.

V. Pechenkin and I. J. Fair, “On Four-Wave Mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module,” J. Lightwave Technol.29(11), 1678–1690 (2011).
[CrossRef]

Fatadin, I.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

Fejer, M. M.

Ferrario, M.

Fisher, R. A.

Goldfarb, G.

Govan, D. S.

N. E. Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron.18(2), 950–957 (2012).
[CrossRef]

Ip, E.

Ives, D.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

Jamshidifar, M.

N. E. Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron.18(2), 950–957 (2012).
[CrossRef]

Jansen, S. L.

Ji, Y.

X. Liu, Y. Qiao, and Y. Ji, “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40 Gb/s CO-OFDM systems,” Opt. Commun.283(13), 2749–2753 (2010).
[CrossRef]

Kahn, J. M.

Khoe, G. D.

Kim, I.

Krummrich, P. M.

Langrock, C.

Li, G.

Li, X.

Liu, X.

X. Liu, Y. Qiao, and Y. Ji, “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40 Gb/s CO-OFDM systems,” Opt. Commun.283(13), 2749–2753 (2010).
[CrossRef]

Lowery, A. J.

Marazzi, L.

Marhic, M. E.

N. E. Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron.18(2), 950–957 (2012).
[CrossRef]

Martelli, P.

Martinelli, M.

Mateo, E.

Minzioni, P.

Mitra, P. P.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Parolari, P.

Pechenkin, V.

V. Pechenkin and I. J. Fair, “On Four-Wave Mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module,” J. Lightwave Technol.29(11), 1678–1690 (2011).
[CrossRef]

Premaratne, M.

Pusino, V.

Qiao, Y.

X. Liu, Y. Qiao, and Y. Ji, “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40 Gb/s CO-OFDM systems,” Opt. Commun.283(13), 2749–2753 (2010).
[CrossRef]

Rafique, D.

Savory, S. J.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

Schiffini, A.

Siano, R.

Sohler, W.

Spinnler, B.

Stark, J. B.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Suche, H.

Suydam, B. R.

van den Borne, D.

Wang, S.

Watanabe, S.

S. Watanabe and T. Chikama, “Cancellation of four-wave mixing in multichannel fibre transmission by midway optical phase conjugation,” Electron. Lett.30(14), 1156–1157 (1994).
[CrossRef]

Yaman, F.

Yevick, D.

Electron. Lett.

S. Watanabe and T. Chikama, “Cancellation of four-wave mixing in multichannel fibre transmission by midway optical phase conjugation,” Electron. Lett.30(14), 1156–1157 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. E. Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron.18(2), 950–957 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

J. Lightwave Technol.

Nature

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Opt. Commun.

X. Liu, Y. Qiao, and Y. Ji, “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40 Gb/s CO-OFDM systems,” Opt. Commun.283(13), 2749–2753 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. Elschner, T. Richter, and C. Schubert, “Characterization of FWM-induced crosstalk for WDM operation of a fiber-optical parametric amplifier,” in European Conference on Optical Communication, (OSA, 2011), Mo.1.A.2.

L. B. Du, M. M. Morshed, and A. J. Lowery, “604-Gb/s coherent optical OFDM over 800 km of S-SMF with mid-span spectral inversion,” in OptoElectronics and Communications Conference, (IEEE, 2012), SC2_1022.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Transmitter and receiver setup; (b) the optical link detail; (c) spectrum after the HNLF.

Fig. 2
Fig. 2

Optical spectrum after 800 km measured with an Agilent High-Resolution Spectrometer.

Fig. 3
Fig. 3

Spectrum of the signal after the HNLF: (red) input signal; (other colors) FWM products.

Fig. 4
Fig. 4

Q versus the input power of the signal into the OPC module.

Fig. 5
Fig. 5

Q versus the launch power after 800 km with and without MSSI.

Fig. 6
Fig. 6

BER for the 22 channels after 800 km of fiber, with and without MSSI.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P S(opc) = ( γ L eff ) 2 P pump 2 P sig ,
P FWM(sc) =2 ( γ L eff ) 2 P sig 3 ,
P FWM(sps) =4 ( γ L eff ) 2 P sig 2 P pump .
P FWM(opc) = 9 2 ( γL ) 4 P sig 3 P pump 2 ,

Metrics